Do you want to publish a course? Click here

Phase Diagrams and Crossover in Spatially Anisotropic d=3 Ising, XY Magnetic and Percolation Systems: Exact Renormalization-Group Solutions of Hierarchical Models

88   0   0.0 ( 0 )
 Added by A. Nihat Berker
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hierarchical lattices that constitute spatially anisotropic systems are introduced. These lattices provide exact solutions for hierarchical models and, simultaneously, approximate solutions for uniaxially or fully anisotropic d=3 physical models. The global phase diagrams, with d=2 and d=1 to d=3 crossovers, are obtained for Ising, XY magnetic models and percolation systems, including crossovers from algebraic order to true long-range order.



rate research

Read More

In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical models on the two dimensional lattices, whose transitions involve non-local or topological properties, including site and bond percolations, the XY model and the generalized XY model. We find that using just one hidden layer in a fully-connected neural network, the percolation transition can be learned and the data collapse by using the average output layer gives correct estimate of the critical exponent $ u$. We also study the Berezinskii-Kosterlitz-Thouless transition, which involves binding and unbinding of topological defects---vortices and anti-vortices, in the classical XY model. The generalized XY model contains richer phases, such as the nematic phase, the paramagnetic and the quasi-long-range ferromagnetic phases, and we also apply machine learning method to it. We obtain a consistent phase diagram from the network trained with only data along the temperature axis at two particular parameter $Delta$ values, where $Delta$ is the relative weight of pure XY coupling. Besides using the spin configurations (either angles or spin components) as the input information in a convolutional neural network, we devise a feature engineering approach using the histograms of the spin orientations in order to train the network to learn the three phases in the generalized XY model and demonstrate that it indeed works. The trained network by using system size $Ltimes L$ can be used to the phase diagram for other sizes ($Ltimes L$, where $L e L$) without any further training.
We consider a S=1 kagome Ising model with triquadratic interactions around each triangular face of the kagome lattice, single-ion anisotropy and an applied magnetic field. A mapping establishes an equivalence between the magnetic canonical partition function of the model and the grand canonical partition function of a kagome lattice-gas model with localized three-particle interactions. Since exact phase diagrams are known for condensation in the one-parameter lattice-gas model, the mapping directly provides the corresponding exact phase diagrams of the three-parameter S=1 Ising model. As anisotropy competes with interactions, results include the appearance of confluent singularities effecting changes in the topology of the phase diagrams, phase boundary curves (magnetic field vs temperature) with purely positive or negative slopes as well as intermediate cases showing nonmonotonicity, and coexistence curves (magnetization vs temperature) with varying shapes and orientations, in some instances entrapping a homogeneous phase.
Renormalization group calculations are used to give exact solutions for rigidity percolation on hierarchical lattices. Algebraic scaling transformations for a simple example in two dimensions produce a transition of second order, with an unstable critical point and associated scaling laws. Values are provided for the order parameter exponent $beta = 0.0775$ associated with the spanning rigid cluster and also for $d u = 3.533$ which is associated with an anomalous lattice dimension $d$ and the divergence in the correlation length near the transition. In addition we argue that the number of floppy modes $F$ plays the role of a free energy and hence find the exponent $alpha$ and establish hyperscaling. The exact analytical procedures demonstrated on the chosen example readily generalize to wider classes of hierarchical lattice.
The XY model with quenched random disorder is studied by a zero temperature domain wall renormalization group method in 2D and 3D. Instead of the usual phase representation we use the charge (vortex) representation to compute the domain wall, or defect, energy. For the gauge glass corresponding to the maximum disorder we reconfirm earlier predictions that there is no ordered phase in 2D but an ordered phase can exist in 3D at low temperature. However, our simulations yield spin stiffness exponents $theta_{s} approx -0.36$ in 2D and $theta_{s} approx +0.31$ in 3D, which are considerably larger than previous estimates and strongly suggest that the lower critical dimension is less than three. For the $pm J$ XY spin glass in 3D, we obtain a spin stiffness exponent $theta_{s} approx +0.10$ which supports the existence of spin glass order at finite temperature in contrast with previous estimates which obtain $theta_{s}< 0$. Our method also allows us to study renormalization group flows of both the coupling constant and the disorder strength with length scale $L$. Our results are consistent with recent analytic and numerical studies suggesting the absence of a re-entrant transition in 2D at low temperature. Some possible consequences and connections with real vortex systems are discussed.
110 - Qiang Luo , jize Zhao , 2018
We derive several closed-form expressions for the fidelity susceptibility~(FS) of the anisotropic $XY$ model in the transverse field. The basic idea lies in a partial fraction expansion of the expression so that all the terms are related to a simple fraction or its derivative. The critical points of the model are reiterated by the FS, demonstrating its validity for characterizing the phase transitions. Moreover, the critical exponents $ u$ associated with the correlation length in both critical regions are successfully extracted by the standard finite-size scaling analysis.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا