Do you want to publish a course? Click here

Electron Spin Dynamics and Hyperfine Interactions in Fe/Al_0.1Ga_0.9As/GaAs Spin Injection Heterostructures

85   0   0.0 ( 0 )
 Added by Paul Crowell
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied hyperfine interactions between spin-polarized electrons and lattice nuclei in Al_0.1Ga_0.9As/GaAs quantum well (QW) heterostructures. The spin-polarized electrons are electrically injected into the semiconductor heterostructure from a metallic ferromagnet across a Schottky tunnel barrier. The spin-polarized electron current dynamically polarizes the nuclei in the QW, and the polarized nuclei in turn alter the electron spin dynamics. The steady-state electron spin is detected via the circular polarization of the emitted electroluminescence. The nuclear polarization and electron spin dynamics are accurately modeled using the formalism of optical orientation in GaAs. The nuclear spin polarization in the QW is found to depend strongly on the electron spin polarization in the QW, but only weakly on the electron density in the QW. We are able to observe nuclear magnetic resonance (NMR) at low applied magnetic fields on the order of a few hundred Oe by electrically modulating the spin injected into the QW. The electrically driven NMR demonstrates explicitly the existence of a Knight field felt by the nuclei due to the electron spin.



rate research

Read More

258 - X.Y. Dong , C. Adelmann , J.Q. Xie 2004
Electrical spin injection from the Heusler alloy Co_2MnGe into a p-i-n Al_0.1Ga_0.9As/GaAs light emitting diode is demonstrated. A maximum steady-state spin polarization of approximately 13% at 2 K is measured in two types of heterostructures. The injected spin polarization at 2 K is calculated to be 27% based on a calibration of the spin detector using Hanle effect measurements. Although the dependence on electrical bias conditions is qualitatively similar to Fe-based spin injection devices of the same design, the spin polarization injected from Co_2MnGe decays more rapidly with increasing temperature.
We demonstrate optical orientation in Ge/SiGe quantum wells and study their spin properties. The ultrafast electron transfer from the center of the Brillouin zone to its edge allows us to achieve high spin-polarization efficiencies and to resolve the spin dynamics of holes and electrons. The circular polarization degree of the direct-gap photoluminescence exceeds the theoretical bulk limit, yielding ~37% and ~85% for transitions with heavy and light holes states, respectively. The spin lifetime of holes at the top of the valence band is found to be ~0.5 ps and it is governed by transitions between heavy and light hole states. Electrons at the bottom of the conduction band, on the other hand, have a spin lifetime that exceeds 5 ns below 150 K. Theoretical analysis of the electrons spin relaxation indicates that phonon-induced intervalley scattering dictates the spin lifetime.
176 - M.K. Chan , Q.O. Hu , J. Zhang 2009
Measurements and modeling of electron spin transport and dynamics are used to characterize hyperfine interactions in Fe/GaAs devices with $n$-GaAs channels. Ga and As nuclei are polarized by electrically injected electron spins, and the nuclear polarization is detected indirectly through the depolarization of electron spins in the hyperfine field. The dependence of the electron spin signal on injector bias and applied field direction is modeled by a coupled drift-diffusion equation, including effective fields from both the electronic and nuclear polarizations. This approach is used to determine the electron spin polarization independently of the assumptions made in standard transport measurements. The extreme sensitivity of the electron spin dynamics to the nuclear spin polarization also facilitates the electrical detection of nuclear magnetic resonance.
146 - M.Zwierzycki , K.Xia , P.J.Kelly 2002
The spin-dependence of the interface resistance between ferromagnetic Fe and InAs is calculated from first-principles for specular and disordered (001) interfaces. Because of the symmetry mismatch in the minority-spin channel, the specular interface acts as an efficient spin filter with a transmitted current polarisation between 98 an 89%. The resistance of a specular interface in the diffusive regime is comparable to the resistance of a few microns of bulk InAs. Symmetry-breaking arising from interface disorder reduces the spin asymmetry substantially and we conclude that efficient spin injection from Fe into InAs can only be realized using high quality epitaxial interfaces.
We investigate the dynamically polarized nuclear-spin system in Fe/emph{n}-GaAs heterostructures using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-valve devices. The hyperfine interaction is known to act more strongly on donor-bound electron states than on those in the conduction band. We provide a quantitative model of the temperature dependence of the occupation of donor sites. With this model we calculate the ratios of the hyperfine and quadrupolar nuclear relaxation rates of each isotope. For all temperatures measured, quadrupolar relaxation limits the spatial extent of nuclear spin-polarization to within a Bohr radius of the donor sites and is directly responsible for the isotope dependence of the measured NMR signal amplitude. The hyperfine interaction is also responsible for the $2text{ kHz}$ Knight shift of the nuclear resonance frequency that is measured as a function of the electron spin accumulation. The Knight shift is shown to provide a measurement of the electron spin-polarization that agrees qualitatively with standard spin transport measurements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا