Do you want to publish a course? Click here

Dynamic behaviour of Josephson-junction qubits: crossover between Rabi oscillations and Landau-Zener transitions

372   0   0.0 ( 0 )
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamic behaviour of a quantum two-level system with periodically varying parameters by solving the master equation for the density matrix. Two limiting cases are considered: multiphoton Rabi oscillations and Landau-Zener transitions. The approach is applied to the description of the dynamics of superconducting qubits. In particular, the case of the interferometer-type charge qubit with periodically varying parameters (gate voltage or magnetic flux) is investigated. The time-averaged energy level populations are calculated as funtions of the qubits control parameters.



rate research

Read More

A two-level system traversing a level anticrossing has a small probability to make a so-called Landau-Zener (LZ) transition between its energy bands, in deviation from simple adiabatic evolution. This effect takes on renewed relevance due to the observation of quantum coherence in superconducting qubits (macroscopic Schrodinger cat devices). We report an observation of LZ transitions in an Al three-junction qubit coupled to a Nb resonant tank circuit.
We have demonstrated strong antiferromagnetic coupling between two three-junction flux qubits based on a shared Josephson junction, and therefore not limited by the small inductances of the qubit loops. The coupling sign and magnitude were measured by coupling the system to a high-quality superconducting tank circuit. Design modifications allowing to continuously tune the coupling strength and/or make the coupling ferromagnetic are discussed.
Nonlinear effects in mesoscopic devices can have both quantum and classical origins. We show that a three-Josephson-junction (3JJ) flux qubit in the _classical_ regime can produce low-frequency oscillations in the presence of an external field in resonance with the (high-frequency) harmonic mode of the system, $omega$. Like in the case of_quantum_ Rabi oscillations, the frequency of these pseudo-Rabi oscillations is much smaller than $omega$ and scales approximately linearly with the amplitude of the external field. This classical effect can be reliably distinguished from its quantum counterpart because it can be produced by the external perturbation not only at the resonance frequency $omega$ and its subharmonics ($omega/n$), but also at its overtones, $nomega$.
We investigate the current-phase relation of S/F/S junctions near the crossover between the 0 and the pi ground states. We use Nb/CuNi/Nb junctions where this crossover is driven both by thickness and temperature. For a certain thickness a non-zero minimum of critical current is observed at the crossover temperature. We analyze this residual supercurrent by applying a high frequency excitation and observe the formation of half-integer Shapiro steps. We attribute these fractional steps to a doubling of the Josephson frequency due to a sin(2*phi) current-phase relation. This phase dependence is explained by the splitting of the energy levels in the ferromagnetic exchange field.
364 - V. Humbert , M. Aprili , J. Hammer 2012
An extended Josephson junction consists of two superconducting electrodes that are separated by an insulator and it is therefore also a microwave cavity. The superconducting phase difference across the junction determines the supercurrent as well as its spatial distribution. Both, an external magnetic field and a resonant cavity intrafield produce a spatial modification of the superconducting phase along the junction. The interplay between these two effects leads to interference in the critical current of the junction and allows us to continuously tune the coupling strength between the first cavity mode and the Josephson phase from 1 to -0.5. This enables static and dynamic control over the junction in the ultra-strong coupling regime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا