Do you want to publish a course? Click here

Momentum Dependence of Charge Excitations in the Electron-Doped Superconductor Nd1.85Ce0.15CuO4: a RIXS Study

72   0   0.0 ( 0 )
 Added by Kenji Ishii
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a resonant inelastic x-ray scattering (RIXS) study of charge excitations in the electron-doped high-Tc superconductor Nd1.85Ce0.15CuO4. The intraband and interband excitations across the Fermi energy are separated for the first time by tuning the experimental conditions properly to measure charge excitations at low energy. A dispersion relation with q-dependent width emerges clearly in the intraband excitation, while the intensity of the interband excitation is concentrated around 2 eV near the zone center. The experimental results are consistent with theoretical calculation of the RIXS spectra based on the Hubbard model.



rate research

Read More

We study how multiple charge excitations appear in the resonant inelastic x-ray scattering (RIXS) spectra of metals. The single excitations in the problem are the plasmons and electron-hole pairs, and multi-excitation processes are usually neglected. However, at small momentum transfer the multi-excitation contributions may dominate the signal and one needs to understand how to interpret the data. In particular, we demonstrate how to decode the total multi-excitation intensity and extract the plasmon dispersion. While our calculations are based on the random phase approximation, which does not allow to obtain quantitatively precise results in the entire region of parameters, we expect them to capture semi-qualitatively all features expected for charged Fermi-liquid states, including universal and singular properties of the RIXS spectra.
We use the nonequilibrium dynamical mean field theory formalism to compute the equilibrium and nonequilibrium resonant inelastic X-ray scattering (RIXS) signal of a strongly interacting fermionic lattice model with a coupling of dispersionless phonons to the total charge on a given site. In the atomic limit, this model produces phonon subbands in the spectral function, but not in the RIXS signal. Electron hopping processes however result in phonon-related modifications of the charge excitation peak. We discuss the equilibrium RIXS spectra and the characteristic features of nonequilibrium states induced by photo-doping and by the application of a static electric field. The latter produces features related to Wannier-Stark states, which are dressed with phonon sidebands. Thanks to the effect of field-induced localization, the phonon features can be clearly resolved even in systems with weak electron-phonon coupling.
We have studied the evolution of magnetic and orbital excitations as a function of hole-doping in single crystal samples of Sr2Ir(1-x)Rh(x)O4 (0.07 < x < 0.42) using high resolution Ir L3-edge resonant inelastic x-ray scattering (RIXS). Within the antiferromagnetically ordered region of the phase diagram (x < 0.17) we observe highly dispersive magnon and spin-orbit exciton modes. Interestingly, both the magnon gap energy and the magnon bandwidth appear to increase as a function of doping, resulting in a hardening of the magnon mode with increasing hole doping. As a result, the observed spin dynamics of hole-doped iridates more closely resemble those of the electron-doped, rather than hole-doped, cuprates. Within the paramagnetic region of the phase diagram (0.17 < x < 0.42) the low-lying magnon mode disappears, and we find no evidence of spin fluctuations in this regime. In addition, we observe that the orbital excitations become essentially dispersionless in the paramagnetic phase, indicating that magnetic order plays a crucial role in the propagation of the spin-orbit exciton.
In cuprate high-temperature superconductors, an antiferromagnetic Mott insulating state can be destabilized toward unconventional superconductivity by either hole- or electron-doping. In addition to these two electronic phases there is now a copious amount of evidence that supports the presence of a charge ordering (CO) instability competing with superconductivity inside the pseudogap state of the hole-doped (p-type) cuprates, but so far there has been no evidence of a similar CO in their electron-doped (n-type) counterparts. Here we report resonant x-ray scattering (RXS) measurements which demonstrate the presence of charge ordering in the n-type cuprate Nd2-xCexCuO4 near optimal doping. Remarkably we find that the CO in Nd2-xCexCuO4 occurs with similar periodicity, and along the same direction, as the CO in p-type cuprates. However, in contrast to the latter, the CO onset in Nd2-xCexCuO4 is higher than the pseudogap temperature, and is actually in the same temperature range where antiferromagnetic fluctuations are first detected -- thereby showing that CO and antiferromagnetic fluctuations are likely coupled in n-type cuprates. Overall our discovery uncovers a missing piece of the cuprate phase diagram and opens a parallel path to the study of CO and its relationship to other phenomena, such as antiferromagnetism (AF) and high-temperature superconductivity.
394 - M. Taguchi , A. Chainani , S. Ueda 2015
We have studied the electronic structure of bulk single crystals and epitaxial films of magnetite Fe$_3$O$_4$. Fe $2p$ core-level spectra show clear differences between hard x-ray (HAX-) and soft x-ray (SX-) photoemission spectroscopy (PES), indicative of surface effects. The bulk-sensitive spectra exhibit temperature ($T$)-dependent charge excitations across the Verwey transition at $T_V$=122 K, which is missing in the surface-sensitive spectra. An extended impurity Anderson model full-multiplet analysis reveals roles of the three distinct Fe-species (A-Fe$^{3+}$, B-Fe$^{2+}$, B-Fe$^{3+}$) below $T_V$ for the Fe $2p$ spectra, and its $T-$dependent evolution. The Fe $2p$ HAXPES spectra show a clear magnetic circular dichroism (MCD) in the metallic phase of magnetized 100-nm-thick films. The model calculations also reproduce the MCD and identify the magnetically distinct sites associated with the charge excitations. Valence band HAXPES shows finite density of states at $E_F$ for the polaronic metal with remnant order above $T_V$, and a clear gap formation below $T_V$. The results indicate that the Verwey transition is driven by changes in the strongly correlated and magnetically active B-Fe$^{2+}$ and B-Fe$^{3+}$ electronic states, consistent with resistivity and bulk-sensitive optical spectra.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا