Do you want to publish a course? Click here

Signatures of multiple charge excitations in RIXS spectra of metals

89   0   0.0 ( 0 )
 Added by Alexei Tsvelik
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how multiple charge excitations appear in the resonant inelastic x-ray scattering (RIXS) spectra of metals. The single excitations in the problem are the plasmons and electron-hole pairs, and multi-excitation processes are usually neglected. However, at small momentum transfer the multi-excitation contributions may dominate the signal and one needs to understand how to interpret the data. In particular, we demonstrate how to decode the total multi-excitation intensity and extract the plasmon dispersion. While our calculations are based on the random phase approximation, which does not allow to obtain quantitatively precise results in the entire region of parameters, we expect them to capture semi-qualitatively all features expected for charged Fermi-liquid states, including universal and singular properties of the RIXS spectra.



rate research

Read More

71 - K. Ishii , K. Tsutsui , Y. Endoh 2004
We report a resonant inelastic x-ray scattering (RIXS) study of charge excitations in the electron-doped high-Tc superconductor Nd1.85Ce0.15CuO4. The intraband and interband excitations across the Fermi energy are separated for the first time by tuning the experimental conditions properly to measure charge excitations at low energy. A dispersion relation with q-dependent width emerges clearly in the intraband excitation, while the intensity of the interband excitation is concentrated around 2 eV near the zone center. The experimental results are consistent with theoretical calculation of the RIXS spectra based on the Hubbard model.
The high harmonic spectrum of the Mott insulating Hubbard model has recently been shown to exhibit plateau structures with cutoff energies determined by $n$th nearest neighbor doublon-holon recombination processes. The spectrum thus allows to extract the on-site repulsion $U$. Here, we consider generalizations of the single-band Hubbard model and discuss the signatures of bosonic excitations in high harmonic spectra. Specifically, we study an electron-plasmon model which captures the essential aspects of the dynamically screened Coulomb interaction in solids and a multi-orbital Hubbard model with Hund coupling which allows to analyze the effect of local spin excitations. For the electron-plasmon model, we show that the high harmonic spectrum can reveal information about the screened and bare onsite interaction, the boson frequency, as well as the relation between boson coupling strength and boson frequency. In the multi-orbital case, string states formed by local spin excitations result in an increase of the radiation intensity and cutoff energy associated with higher order recombination processes.
68 - Li Huang , Haiyan Lu 2020
By means of the density functional theory in combination with the dynamical mean-field theory, we tried to examine the electronic structure of hexagonal FeGe, in which the Fe atoms form a quasi-2D layered Kagome lattice. We predict that it is a representative Kagome metal characterized by orbital selective Dirac fermions and extremely flat bands. Furthermore, Fes 3$d$ electrons are strongly correlated. They exhibit quite apparent signatures of electronic correlation induced by Hunds rule coupling, such as sizable differentiation in band renormalization, non-Fermi-liquid behavior, spin-freezing state, and spin-orbital separation. Thus, FeGe can be regarded as an ideal platform to study the interplay of Kagome physics and Hundness. 5
The ladder compound Sr$_{14}$Cu$_{24}$O$_{41}$ is of interest both as a quasi-one-dimensional analog of the superconducting cuprates and as a superconductor in its own right when Sr is substituted by Ca. In order to model resonant inelastic x-ray scattering (RIXS) spectra for this compound, we investigate the simpler SrCu$_{2}$O$_{3}$ system in which the crystal structure contains very similar ladder planes. We approximate the LDA dispersion of SrCu$_{2}$O$_{3}$ by a Cu only two-band tight-binding model. Strong correlation effects are incorporated by assuming an anti-ferromagnetic ground state. The available angle-resolved photoemission (ARPES) and RIXS data on the ladder compound are found to be in reasonable accord with our theoretical predictions.
In the optical conductivity of four different manganites with commensurate charge order (CO), strong peaks appear in the meV range below the ordering temperature T_{CO}. They are similar to those reported for one-dimensional charge density waves (CDW) and are assigned to pinned phasons. The peaks and their overtones allow one to obtain, for La{1-n/8}Ca{n/8}$MnO{3} with n = 5, 6, the electron-phonon coupling, the effective mass of the CO system, and its contribution to the dielectric constant. These results support a description of the CO in La-Ca manganites in terms of moderately weak-coupling and of the CDW theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا