Do you want to publish a course? Click here

A microscopic approach to spin dynamics: about the meaning of spin relaxation times

104   0   0.0 ( 0 )
 Added by Christian Lechner
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an approach to spin dynamics by extending the optical Bloch equations for the driven two-level system to derive microscopic expressions for the transverse and longitudinal spin relaxation times. This is done for the 6-level system of electron and hole subband states in a semiconductor or a semiconductor quantum structure to account for the degrees-of-freedom of the carrier spin and the polarization of the exciting light and includes the scattering between carriers and lattice vibrations on a microscopic level. For the subsystem of the spin-split electron subbands we treat the electron-phonon interaction in second order and derive a set of equations of motion for the 2x2 spin-density matrix which describes the electron spin dynamics and contains microscopic expressions for the longitudinal (T_1) and the transverse (T_2) spin relaxation times. Their meaning will be discussed in relation to experimental investigations of these quantities.



rate research

Read More

60 - C. Lechner , U. Roessler 2005
Semiconductor Bloch equations, in their extension including the spin degree of freedom of the carriers, are capable to describe spin dynamics on a microscopic level. In the presence of free holes, electron spins can flip simultaneously with hole spins due to electron-hole exchange interaction. This mechanism named after Bir, Aronov and Pikus, is described here by using the extended semiconductor Bloch equations and considering carrier-carrier interaction beyond the Hartree-Fock truncation. As a result we derive microscopic expressions for spin-relaxation and spin-dephasing rates.
We present spin relaxation times of 2D holes obtained by means of spin sensitive bleaching of the absorption of infrared radiation in p-type GaAs/AlGaAs quantum wells (QWs). It is shown that the saturation of inter-subband absorption of circularly polarized radiation is mainly controlled by the spin relaxation time of the holes. The saturation behavior has been determined for different QW widths and in a wide temperature range with the result that the saturation intensity substantially decreases with narrowing of the QWs. Spin relaxation times are derived from the measured saturation intensities by making use of calculated (linear) absorption coefficients for direct inter-subband transitions. It is shown that spin relaxation is due to the Dyakonov-Perel mechanism governed by hole-hole scattering. The problem of selection rules is addressed.
54 - C. Lechner , U. Roessler 2004
This paper has been withdrawn by the authors. This is due to the fact that it has been substantially revised. As a consequence title and aim of the contents
110 - J. H. Jiang , M. W. Wu 2009
Electron spin relaxation in bulk III-V semiconductors is investigated from a fully microscopic kinetic spin Bloch equation approach where all relevant scatterings, such as, the electron--nonmagnetic-impurity, electron-phonon, electron-electron, electron-hole, and electron-hole exchange (the Bir-Aronov-Pikus mechanism) scatterings are explicitly included. The Elliot-Yafet mechanism is also fully incorporated. This approach offers a way toward thorough understanding of electron spin relaxation both near and far away from the equilibrium in the metallic regime. The dependence of the spin relaxation time on electron density, temperature, initial spin polarization, photo-excitation density, and hole density are studied thoroughly with the underlying physics analyzed. In contrast to the previous investigations in the literature, we find that: (i) In $n$-type materials, the Elliot-Yafet mechanism is {em less} important than the Dyakonov-Perel mechanism, even for the narrow band-gap semiconductors such as InSb and InAs. (ii) The density dependence of the spin relaxation time is nonmonotonic and we predict a {em peak} in the metallic regime in both $n$-type and intrinsic materials. (iii) In intrinsic materials, the Bir-Aronov-Pikus mechanism is found to be negligible compared with the Dyakonov-Perel mechanism. We also predict a peak in the temperature dependence of spin relaxation time which is due to the nonmonotonic temperature dependence of the electron-electron Coulomb scattering in intrinsic materials with small initial spin polarization. (iv) In $p$-type III-V semiconductors, ...... (the remaining is omitted here due to the limit of space)
150 - L. Szolnoki , B. Dora , A. Kiss 2017
Spin-relaxation is conventionally discussed using two different approaches for materials with and without inversion symmetry. The former is known as the Elliott-Yafet (EY) theory and for the latter the Dyakonov-Perel (DP) theory applies, respectively. We discuss herein a simple and intuitive approach to demonstrate that the two seemingly disparate mechanisms are closely related. A compelling analogy between the respective Hamiltonian is presented and that the usual derivation of spin-relaxation times, in the respective frameworks of the two theories, can be performed. The result also allows to obtain the less canonical spin-relaxation regimes; the generalization of the EY when the material has a large quasiparticle broadening and the DP mechanism in ultrapure semiconductors. The method also allows a practical and intuitive numerical implementation of the spin-relaxation calculation, which is demonstrated for MgB$_2$ that has anomalous spin-relaxation properties.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا