160 MeV Neon ion irradiation has been carried out on MgB2 polycrystalline pellets at various doses. There has not been any significant change in Tc except at the highest dose of 1x10^15 ions/cm^2. Increase in resistivity has been noticed. Resistivity data has been fitted with Bloch-Gruneisen function and the values of Debye temperature, residual resistivity and temperature coefficient of resistivity have been extracted for irradiated as well as unirradiated samples. The increase in the resistivity of irradiated samples has been explained in the light of damage in the 3D pi bonding network of B.
We report on the transport, magnetization, and scanning tunneling spectroscopy measurements on c-axis oriented thin films of MgB2 irradiated with high energy heavy ions of uranium and gold. We find a slight shift in the irreversibility and upper critical field lines to higher temperatures after irradiation. In addition, we observe an increase in the critical current at high temperatures near Tc2 and only a small change at low temperatures. Furthermore, we find no evidence for the existence of anisotropic pinning induced by heavy ion irradiation in this material. Tunneling spectra in an irradiated sample show a double gap structure with a flat background and very low zero-bias conductance, behaving in much the same way as the pristine unirradiated sample.
The London penetration depth was measured in optimally doped Ba0.6K0.4Fe2As2 crystals, with and without columnar defects produced by 1.4 GeV 208Pb irradiation. The low temperature behavior of unirradiated samples was consistent with a fully gapped superconducting state with a minimum energy gap delta_min/(k_B T_C) = 1. Similar gap values were observed for irradiation levels corresponding to mean column-column separations of 32 nm and 22 nm. At very high irradiation levels (column-column separation of 10 nm) a T^2 power law was observed below Tc/3, most likely due to elevated scattering. Neither the location nor the sharpness of the superconducting transition was affected by irradiation. The data provides evidence for an s+/- pairing state.
Sintered samples of MgB2 were irradiated in a fission reactor. Defects in the bulk microstructure are produced during this process mainly by the 10B(n,a)7Li reaction while collisions of fast neutrons with the lattice atoms induce much less damage. Self-shielding effects turn out to be very important and lead to a highly inhomogeneous defect distribution in the irradiated samples. The resulting disorder enhances the normal state resistivity and the upper critical field. The irreversibility line shifts to higher fields at low temperatures and the measured critical current densities increase following irradiation.
Since the discovery of superconductivity in MgB2 considerable progress has been made in determining the physical properties of the material, which are promising for bulk conductors. Tunneling studies show that the material is reasonably isotropic and has a well-developed s-wave energy gap (∆), implying that electronic devices based on MgB2 could operate close to 30K. Although a number of groups have reported the formation of thin films by post-reaction of precursors, heterostructure growth is likely to require considerable technological development, making single-layer device structures of most immediate interest. MgB2 is unlike the cuprate superconductors in that grain boundaries do not form good Josephson junctions, and although a SQUID based on MgB2 nanobridges has been fabricated, the nanobridges themselves do not show junction-like properties. Here we report the successful creation of planar MgB2 junctions by localised ion damage in thin films. The critical current (IC) of these devices is strongly modulated by applied microwave radiation and magnetic field. The product of the critical current and normal state resistance (ICRN) is remarkably high, implying a potential for very high frequency applications.
Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging (MRI). The recent global helium shortage has quickened research into high-temperature superconductors (HTSs) materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB2 permanent bulk magnet was detrmined. Because MgB2 is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.