We observe a new type of magneto-oscillations in the photovoltage and the longitudinal resistance of a two-dimensional electron system. The oscillations are induced by microwave irradiation and are periodic in magnetic field. The period is determined by the microwave frequency, the electron density, and the distance between potential probes. The phenomenon is accounted for by coherent excitation of edge magnetoplasmons in the regions near the contacts and offers perspectives for the development of new tunable microwave and terahertz detection schemes and spectroscopic techniques.
The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc transport experiments at frequencies above 120 GHz, MIROs start to quench, while above 230 GHz, they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.
The electrical transport properties of a bipolar InAs/GaSb system have been studied in magnetic field. The resistivity oscillates between insulating and metallic behaviour while the quantum Hall effect shows a digital character oscillating from 0 to 1 conducatance quantum e^2/h. The insulating behaviour is attributed to the formation of a total energy gap in the system. A novel looped edge state picture is proposed associated with the appearance of a voltage between Hall probes which is symmetric on magnetic field reversal.
Motivated by the recently discovered microwave-induced ``zero-resistance states in two-dimensional electron systems, we study the microwave photoconductivity of a two-dimensional electron gas (2DEG) subject to a unidirectional static periodic potential. The combination of this potential, the classically strong magnetic field, and the microwave radiation may result in an anisotropic negative conductivity of the 2DEG. Similar to the case of a smooth random potential, two mechanisms contribute to the negative photoconductivity. The displacement mechanism arises from electron transitions due to disorder-assisted microwave absorption and emission. The distribution-function mechanism arises from microwave-induced changes in the electron distribution. However, the replacement of a smooth random potential by the unidirectional one, leads to different relative strengths of the two contributions to the photoconductivity. The distribution function mechanism dominates the photoconductivity in the direction of the static potential modulation, while both mechanisms contribute equally strongly to the photoconductivity in the perpendicular direction. The unidirectionality of the static potential simplifies greatly the evaluation of the photoconductivities, which follow directly from Fermis golden rule.
The polarization dependence of the low field microwave photoconductivity and absorption of a two-dimensional electron system has been investigated in a quasi-optical setup in which linear and any circular polarization can be produced in-situ. The microwave induced resistance oscillations and the zero resistance regions are notedly immune to the sense of circular polarization. This observation is discrepant with a number of proposed theories. Deviations only occur near the cyclotron resonance absorption where an unprecedented large resistance response is observed.
We develop a theory of magnetooscillations in the photoconductivity of a two-dimensional electron gas observed in recent experiments. The effect is governed by a change of the electron distribution function induced by the microwave radiation. We analyze a nonlinearity with respect to both the dc field and the microwave power, as well as the temperature dependence determined by the inelastic relaxation rate.
I. V. Kukushkin
,M. Yu. Akimov
,J. H. Smet
.
(2003)
.
"New type of $B$-periodic magneto-oscillations in a two-dimensional electron system induced by microwave irradiation"
.
Mikhailov Sergey
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا