Do you want to publish a course? Click here

Community analysis in social networks

90   0   0.0 ( 0 )
 Added by Albert Diaz-Guilera
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an empirical study of different social networks obtained from digital repositories. Our analysis reveals the community structure and provides a useful visualising technique. We investigate the scaling properties of the community size distribution, and that find all the networks exhibit power law scaling in the community size distributions with exponent either -0.5 or -1. Finally we find that the networks community structure is topologically self-similar using the Horton-Strahler index.



rate research

Read More

66 - D.-H. Kim , B. Kahng , 2003
We generalize the static model by assigning a q-component weight on each vertex. We first choose a component $(mu)$ among the q components at random and a pair of vertices is linked with a color $mu$ according to their weights of the component $(mu)$ as in the static model. A (1-f) fraction of the entire edges is connected following this way. The remaining fraction f is added with (q+1)-th color as in the static model but using the maximum weights among the q components each individual has. This model is motivated by social networks. It exhibits similar topological features to real social networks in that: (i) the degree distribution has a highly skewed form, (ii) the diameter is as small as and (iii) the assortativity coefficient r is as positive and large as those in real social networks with r reaching a maximum around $f approx 0.2$.
Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, in static or interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems---a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.
It is generally believed that, in the thermodynamic limit, the microcanonical description as a function of energy coincides with the canonical description as a function of temperature. However, various examples of systems for which the microcanonical and canonical ensembles are not equivalent have been identified. A complete theory of this intriguing phenomenon is still missing. Here we show that ensemble nonequivalence can manifest itself also in random graphs with topological constraints. We find that, while graphs with a given number of links are ensemble-equivalent, graphs with a given degree sequence are not. This result holds irrespective of whether the energy is nonadditive (as in unipartite graphs) or additive (as in bipartite graphs). In contrast with previous expectations, our results show that: (1) physically, nonequivalence can be induced by an extensive number of local constraints, and not necessarily by long-range interactions or nonadditivity; (2) mathematically, nonquivalence is determined by a different large-deviation behaviour of microcanonical and canonical probabilities for a single microstate, and not necessarily for almost all microstates. The latter criterion, which is entirely local, is not restricted to networks and holds in general.
We study the effective resistance of small-world resistor networks. Utilizing recent analytic results for the propagator of the Edwards-Wilkinson process on small-world networks, we obtain the asymptotic behavior of the disorder-averaged two-point resistance in the large system-size limit. We find that the small-world structure suppresses large network resistances: both the average resistance and its standard deviation approaches a finite value in the large system-size limit for any non-zero density of random links. We also consider a scenario where the link conductance decays as a power of the length of the random links, $l^{-alpha}$. In this case we find that the average effective system resistance diverges for any non-zero value of $alpha$.
A condensation transition was predicted for growing technological networks evolving by preferential attachment and competing quality of their nodes, as described by the fitness model. When this condensation occurs a node acquires a finite fraction of all the links of the network. Earlier studies based on steady state degree distribution and on the mapping to Bose-Einstein condensation, were able to identify the critical point. Here we characterize the dynamics of condensation and we present evidence that below the condensation temperature there is a slow down of the dynamics and that a single node (not necessarily the best node in the network) emerges as the winner for very long times. The characteristic time t* at which this phenomenon occurs diverges both at the critical point and at $T -> 0$ when new links are attached deterministically to the highest quality node of the network.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا