Do you want to publish a course? Click here

The q-component static model : modeling social networks

67   0   0.0 ( 0 )
 Added by Do-Hyun Kim
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We generalize the static model by assigning a q-component weight on each vertex. We first choose a component $(mu)$ among the q components at random and a pair of vertices is linked with a color $mu$ according to their weights of the component $(mu)$ as in the static model. A (1-f) fraction of the entire edges is connected following this way. The remaining fraction f is added with (q+1)-th color as in the static model but using the maximum weights among the q components each individual has. This model is motivated by social networks. It exhibits similar topological features to real social networks in that: (i) the degree distribution has a highly skewed form, (ii) the diameter is as small as and (iii) the assortativity coefficient r is as positive and large as those in real social networks with r reaching a maximum around $f approx 0.2$.



rate research

Read More

We present an empirical study of different social networks obtained from digital repositories. Our analysis reveals the community structure and provides a useful visualising technique. We investigate the scaling properties of the community size distribution, and that find all the networks exhibit power law scaling in the community size distributions with exponent either -0.5 or -1. Finally we find that the networks community structure is topologically self-similar using the Horton-Strahler index.
The zero-temperature Glauber dynamics is used to investigate the persistence probability $P(t)$ in the Potts model with $Q=3,4,5,7,9,12,24,64, 128$, $256, 512, 1024,4096,16384 $,..., $2^{30}$ states on {it directed} and {it undirected} Barabasi-Albert networks and Erdos-Renyi random graphs. In this model it is found that $P(t)$ decays exponentially to zero in short times for {it directed} and {it undirected} Erdos-Renyi random graphs. For {it directed} and {it undirected} Barabasi-Albert networks, in contrast it decays exponentially to a constant value for long times, i.e, $P(infty)$ is different from zero for all $Q$ values (here studied) from $Q=3,4,5,..., 2^{30}$; this shows blocking for all these $Q$ values. Except that for $Q=2^{30}$ in the {it undirected} case $P(t)$ tends exponentially to zero; this could be just a finite-size effect since in the other blocking cases you may have only a few unchanged spins.
The Erdos-Renyi classical random graph is characterized by a fixed linking probability for all pairs of vertices. Here, this concept is generalized by drawing the linking probability from a certain distribution. Such a procedure is found to lead to a static complex network with an arbitrary connectivity distribution. In particular, a scale-free network with the hierarchical organization is constructed without assuming any knowledge about the global linking structure, in contrast to the preferential attachment rule for a growing network. The hierarchical and mixing properties of the static scale-free network thus constructed are studied. The present approach establishes a bridge between a scalar characterization of individual vertices and topology of an emerging complex network. The result may offer a clue for understanding the origin of a few abundance of connectivity distributions in a wide variety of static real-world networks.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
In this paper, we propose a general model for collaboration networks. Depending on a single free parameter {bf preferential exponent}, this model interpolates between networks with a scale-free and an exponential degree distribution. The degree distribution in the present networks can be roughly classified into four patterns, all of which are observed in empirical data. And this model exhibits small-world effect, which means the corresponding networks are of very short average distance and highly large clustering coefficient. More interesting, we find a peak distribution of act-size from empirical data which has not been emphasized before of some collaboration networks. Our model can produce the peak act-size distribution naturally that agrees with the empirical data well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا