Do you want to publish a course? Click here

Observation of local chiral-symmetry breaking in globally centrosymmetric crystals

115   0   0.0 ( 0 )
 Added by Sergio Di Matteo
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

A thorough tensor analysis of the Bragg-forbidden reflection (00.3)$_h$ in corundum systems having a global center of inversion, like V$_2$O$_3$ and $alpha$-Fe$_2$O$_3$, shows that anomalous x-ray resonant diffraction can access chiral properties related to the dipole-quadrupole (E1-E2) channel via an interference with the pure quadrupole-quadrupole (E2-E2) process. This is also confirmed by independent {it ab initio} numerical simulations. In such a way it becomes possible, in this particular case, to estimate the intensity of the ``twisted trigonal crystal field ($C_3$ symmetry) and, in general, to detect chiral quantities in systems where dichroic absorption techniques are ineffective.



rate research

Read More

We have investigated the superconducting state of the non-centrosymmetric compound Re6Zr using magnetization, heat capacity, and muon-spin relaxation/rotation (muSR) measurements. Re6Zr has a superconducting transition temperature, Tc = 6.75 K. Transverse-field muSR experiments, used to probe the superfluid density, suggest an s-wave character for the superconducting gap. However, zero and longitudinal-field muSR data reveal the presence of spontaneous static magnetic fields below Tc indicating that time-reversal symmetry is broken in the superconducting state and an unconventional pairing mechanism. An analysis of the pairing symmetries identifies the ground states compatible with time-reversal symmetry breaking.
108 - Y. Kawakami , T. Amano , H. Ohashi 2020
Charge acceleration during an intense light field application to solids attracts much attention as elementary processes in high-harmonic generation and photoelectron emission [1-7]. For manipulating such attosecond dynamics of charge, carrier-envelope-phase (CEP:relative phase between carrier oscillation of light field and its envelope function) control has been employed in insulators, nanometal and graphene [8-10]. In superconducting materials, collective control of charge motion is expected because of its strongly coherent nature of quasi-particles. Here, in a layered organic superconductor, second harmonic generation (SHG) is observed by using a single-cycle 6 femtosecond near infrared pulse, which is in contrast to the common belief that even harmonics are forbidden in the centrosymmetric system. The SHG shows a CEP sensitive nature and an enhancement near the superconducting temperature. The result and its quantum many-body analysis indicate that a polarized current is induced by non-dissipative acceleration of charge, which is amplified by superconducting fluctuations. This will lead to petahertz functions of superconductors and of strongly correlated systems.
The compelling original idea of a time crystal has referred to a structure that repeats in time as well as in space, an idea that has attracted significant interest recently. While obstructions to realize such structures became apparent early on, focus has shifted to seeing a symmetry breaking in time in periodically driven systems, a property of systems referred to as discrete time crystals. In this work, we introduce Stark time crystals based on a type of localization that is created in the absence of any spatial disorder. We argue that Stark time crystals constitute a phase of matter coming very close to the original idea and exhibit a symmetry breaking in space and time. Complementing a comprehensive discussion of the physics of the problem, we move on to elaborating on possible practical applications and argue that the physical demands of witnessing genuine signatures of many-body localization in large systems may be lessened in such physical systems.
In this paper we study how dynamical chiral symmetry breaking is affected by nonzero chiral chemical potential in Dirac semimetals. To perform this study we applied lattice quantum Monte Carlo simulations of Dirac semimetals. Within lattice simulation we calculated the chiral condensate for various fermion masses, the chiral chemical potentials and effective coupling constants. For all parameters under consideration we have found that the chiral condensate is enhanced by chiral chemical potential. Thus our results confirms that in Dirac semimetals the chiral chemical potential plays a role of the catalyst of the dynamical chiral symmetry breaking.
Our detailed temperature dependent synchrotron powder x-ray diffraction studies along with first-principles density functional perturbation theory calculations, enable us to shed light on the origin of ferroelectricity in GdCrO3. The actual lattice symmetry is found to be noncentrosymmetric orthorhombic Pna21 structure, sup- porting polar nature of the system. Polar distortion is driven by local symmetry breaking and by local distortions dominated by Gd off-centering. Our study reveals an intimate analogy between GdCrO3 and YCrO3. However, a distinctive difference exists that Gd is less displacive compared to Y, which results in an orthorhombic P na21 structure in GdCrO3 in contrast to monoclinic structure in YCrO3 and consequently, decreases its polar property. This is due to the subtle forces involving Gd-4f electrons either directly or indirectly. A strong magneto-electric coupling is revealed using Raman measurements based analysis in the system below Cr-ordering temperature, indicating their relevance to ferroelectric modulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا