No Arabic abstract
We report a clear correspondence between changes in the Curie temperature and carrier density upon annealing in epitaxially grown (Ga,Mn)As layers with thicknesses in the range between 5 nm and 20 nm. The changes are dependent on the layer thickness, indicating that the (Ga,Mn)As - GaAs interface has importance for the physical properties of the (Ga,Mn)As layer. The magnetoresistance shows additional features when compared to thick (Ga,Mn)As layers, that are at present of unknown origin.
The effect of outdiffusion of Mn interstitials from (Ga,Mn)As epitaxial layers, caused by post-growth low-temperature annealing, on their electronic- and band-structure properties has been investigated by modulation photoreflectance (PR) spectroscopy. The annealing-induced changes in structural and magnetic properties of the layers were examined with high-resolution X-ray diffractometry and SQUID magnetometery, respectively. They confirmed an outdiffusion of Mn interstitials from the layers and an enhancement in their hole concentration, which were more efficient for the layer covered with a Sb cap acting as a sink for diffusing Mn interstitials. The PR results revealing a decrease in the band-gap-transition energy in the as-grown (Ga,Mn)As layers, with respect to that in the reference GaAs one, are interpreted by assuming a merging of the Mn-related impurity band with the host GaAs valence band. On the other hand, an increase in the band-gap-transition energy in the annealed (Ga,Mn)As layers is interpreted as a result of the Moss-Burstein shift of the absorption edge due to the Fermi level location within the valence band, determined by the enhanced free-hole concentration. The experimental results are consistent with the valence-band origin of mobile holes mediating ferromagnetic ordering in (Ga,Mn)As, in agreement with the Zener model for ferromagnetic semiconductors.
We study the effects of growth temperature, Ga:As ratio and post-growth annealing procedure on the Curie temperature, Tc, of (Ga,Mn)As layers grown by molecular beam epitaxy. We achieve the highest Tc values for growth temperatures very close to the 2D-3D phase boundary. The increase in Tc, due to the removal of interstitial Mn by post growth annealing, is counteracted by a second process which reduces Tc and which is more effective at higher annealing temperatures. Our results show that it is necessary to optimize the growth parameters and post growth annealing procedure to obtain the highest Tc.
(Ga,Mn)As and related diluted magnetic semiconductors play a major role in spintronics research because of their potential to combine ferromagnetism and semiconducting properties in one physical system. Ferromagnetism requires ~1-10% of substitutional Mn_Ga. Unintentional defects formed during growth at these high dopings significantly suppress the Curie temperature. We present experiments in which by etching the (Ga,Mn)As surface oxide we achieve a dramatic reduction of annealing times necessary to optimize the ferromagnetic film after growth, and report Curie temperature of 180 K at approximately 8% of Mn_Ga. Our study elucidates the mechanism controlling the removal of the most detrimental, interstitial Mn defect. The limits and utility of electrical gating of the highly-doped (Ga,Mn)As semiconductor are not yet established; so far electric-field effects have been demonstrated on magnetization with tens of Volts applied on a top-gate, field effect transistor structure. In the second part of the paper we present a back-gate, n-GaAs/AlAs/GaMnAs transistor operating at a few Volts. Inspired by the etching study of (Ga,Mn)As films we apply the oxide-etching/re-oxidation procedure to reduce the thickness (arial density of carriers) of the (Ga,Mn)As and observe a large enhancement of the gating efficiency. We report gatable spintronic characteristics on a series of anisotropic magnetoresistance measurements.
We report Curie temperatures up to 150 K in annealed Ga1-xMnxAs epilayers grown with a relatively low As:Ga beam equivalent pressure ratio. A variety of measurements (magnetization, Hall effect, magnetic circular dichroism and Raman scattering) show that the higher ferromagnetic transition temperature results from an enhanced free hole density. The data also indicate that, in addition to the carrier concentration, the sample thickness limits the maximum attainable Curie temperature in this material - suggesting that the free surface of Ga1-xMnxAs epilayers is important in determining their physical properties.
The effect of annealing at 250 C on the carrier depth profile, Mn distribution, electrical conductivity, and Curie temperature of (Ga,Mn)As layers with thicknesses > 200 nm, grown by molecular-beam epitaxy at low temperatures, is studied by a variety of analytical methods. The vertical gradient in hole concentration, revealed by electrochemical capacitance-voltage profiling, is shown to play a key role in the understanding of conductivity and magnetization data. The gradient, basically already present in as-grown samples, is strongly influenced by post-growth annealing. From secondary ion mass spectroscopy it can be concluded that, at least in thick layers, the change in carrier depth profile and thus in conductivity is not primarily due to out-diffusion of Mn interstitials during annealing. Two alternative possible models are discussed.