Do you want to publish a course? Click here

EXAFS study of Tl$_{0.75}$Cu$_{.25}$Ba$_2$Ca$_3$Cu$_4$ O$_y$ and Cu$_{0.68}$C$_{.32}$Ba$_2$Ca$_3$Cu$_4$ O$_y$ superconductors [bulk] at 300 K

157   0   0.0 ( 0 )
 Added by Sher Alam
 Publication date 2001
  fields Physics
and research's language is English
 Authors Sher Alam




Ask ChatGPT about the research

The results of EXAFS measurements at 300 K for the superconducting compounds Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ [Tl-1234], TlBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Tl-1212], and CuBa$_{2}$Ca$_{3}$Cu$_{4}$O$_{y}$ [Cu-1234]. are reported. We have measured the EXAFS spectrum for Tl$_{0.75}$Cu$_{0.25}$Ba$_{2}$Ca$_{3}$Cu$_4$O$_{y}$ in the range 10K-300K, however here we limit our discussion to the spectrum at 300 K. This material is prepared under high pressure [3.5 GPa] from precursors with small carbon concentrations and exhibits a T$_c$ of $~127$ K. We have also performed ``aging study by looking at XRD for this material after approximately one year. The XRD results at 300 K are ``unchanged. It is of interest to compare the EXAFS spectrum of this compound with the corresponding compound Cu-1234. Remarks on the choice of appropriate EXAFS standard for this and related compounds are also given. Based on our data analysis we quantify disorder in these systems. By using the Cu-O in-plane distance we give values for the microstrain parameter, which can be related to the charge ordering transition.

rate research

Read More

We report detailed neutron scattering studies on Ba$_2$Cu$_3$O$_4$Cl$_2$. The compound consists of two interpenetrating sublattices of Cu, labeled as Cu$_{rm A}$ and Cu$_{rm B}$, each of which forms a square-lattice Heisenberg antiferromagnet. The two sublattices order at different temperatures and effective exchange couplings within the sublattices differ by an order of magnitude. This yields an inelastic neutron spectrum of the Cu$_{rm A}$ sublattice extending up to 300 meV and a much weaker dispersion of Cu$_{rm B}$ going up to around 20 meV. Using a single-band Hubbard model we derive an effective spin Hamiltonian. From this, we find that linear spin-wave theory gives a good description to the magnetic spectrum. In addition, a magnetic field of 10 T is found to produce effects on the Cu$_{rm B}$ dispersion that cannot be explained by conventional spin-wave theory.
A central issue in the quest to understand the superconductivity in cuprates is the nature and origin of the pseudogap state, which harbours anomalous electronic states such as Fermi arc, charge density wave (CDW), and $d$-wave superconductivity. A fundamentally important, but long-standing controversial problem has been whether the pseudogap state is a distinct thermodynamic phase characterized by broken symmetries below the onset temperature $T^*$. Electronic nematicity, a fourfold ($C_4$) rotational symmetry breaking, has emerged as a key feature inside the pseudogap regime, but the presence or absence of a nematic phase transition and its relationship to the pseudogap remain unresolved. Here we report thermodynamic measurements of magnetic torque in the underdoped regime of orthorhombic YBa$_2$Cu$_3$O$_y$ with a field rotating in the CuO$_2$ plane, which allow us to quantify magnetic anisotropy with exceptionally high precision. Upon entering the pseudogap regime, the in-plane anisotropy of magnetic susceptibility increases after exhibiting a distinct kink at $T^*$. Our doping dependence analysis reveals that this anisotropy is preserved below $T^*$ even in the limit where the effect of orthorhombicity is eliminated. In addition, the excess in-plane anisotropy data show a remarkable scaling behaviour with respect to $T/T^*$ in a wide doping range. These results provide thermodynamic evidence that the pseudogap onset is associated with a second-order nematic phase transition, which is distinct from the CDW transition that accompanies translational symmetry breaking. This suggests that nematic fluctuations near the pseudogap phase boundary have a potential link to the strange metallic behaviour in the normal state, out of which high-$T_c$ superconductivity emerges.
Polarized and unpolarized neutron diffraction has been used to search for magnetic order in YBa$_2$Cu$_3$O$_{6+x}$ superconductors. Most of the measurements were made on a high quality crystal of YBa$_2$Cu$_3$O$_{6.6}$. It is shown that this crystal has highly ordered ortho-II chain order, and a sharp superconducting transition. Inelastic scattering measurements display a very clean spin-gap and pseudogap with any intensity at 10 meV being 50 times smaller than the resonance intensity. The crystal shows a complicated magnetic order that appears to have three components. A magnetic phase is found at high temperatures that seems to stem from an impurity with a moment that is in the $a$-$b$ plane, but disordered on the crystal lattice. A second ordering occurs near the pseudogap temperature that has a shorter correlation length than the high temperature phase and a moment direction that is at least partly along the c-axis of the crystal. Its moment direction, temperature dependence, and Bragg intensities suggest that it may stem from orbital ordering of the $d$-density wave (DDW) type. An additional intensity increase occurs below the superconducting transition. The magnetic intensity in these phases does not change noticeably in a 7 Tesla magnetic field aligned approximately along the c-axis. Searches for magnetic order in YBa$_2$Cu$_3$O$_{7}$ show no signal while a small magnetic intensity is found in YBa$_2$Cu$_3$O$_{6.45}$ that is consistent with c-axis directed magnetic order. The results are contrasted with other recent neutron measurements.
281 - R. Zhou , M. Hirata , T. Wu 2016
Observing how electronic states in solids react to a local symmetry breaking provides insight into their microscopic nature. A striking example is the formation of bound states when quasiparticles are scattered off defects. This is known to occur, under specific circumstances, in some metals and superconductors but not, in general, in the charge-density-wave (CDW) state. Here, we report the unforeseen observation of bound states when a magnetic field quenches superconductivity and induces long-range CDW order in YBa$_2$Cu$_3$O$_y$. Bound states indeed produce an inhomogeneous pattern of the local density of states $N(E_F)$ that leads to a skewed distribution of Knight shifts which is detected here through an asymmetric profile of $^{17}$O NMR lines. We argue that the effect arises most likely from scattering off defects in the CDW state, which provides a novel case of disorder-induced bound states in a condensed-matter system and an insightful window into charge ordering in the cuprates.
Using ultrasound measurements on detwinned single crystals of underdoped YBa$_2$Cu$_3$O$_y$ (YBCO) we study the hole doping ($p$) evolution of the thermodynamic anisotropy obtained by comparing the strain dependence of superconducting $T_{rm c}$ along the $a$ and $b$ crystallographic directions. While the structural orthorhombicity of YBCO reduces monotonically with decreasing $p<0.16$, we find that the thermodynamic anisotropy shows an intriguing enhancement at intermediate doping level of electronic origin. Our theoretical analysis shows that the enhancement of the electronic anisotropy can be related to the pseudogap potential that itself increases when the Mott insulating state is approached. Our results imply that the pseudogap is controlled by a local energy scale that can be tuned by varying the nearest neighbor Cu-Cu bond length. Our work opens the possibility to strain engineer the pseudogap potential to enhance the superconducting $T_{rm c}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا