Do you want to publish a course? Click here

On the Influence of Noise on the Critical and Oscillatory Behavior of a Predator-Prey Model: Coherent Stochastic Resonance at the Proper Frequency

134   0   0.0 ( 0 )
 Added by Horacio S. Wio
 Publication date 2000
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Noise induced changes in the critical and oscillatory behavior of a Prey-Predator system are studied using power spectrum density and Spectral Amplification Factor (SAF) analysis. In the absence of external noise, the population densities exhibit three kinds of asymptotic behavior, namely: Absorbing State, Fixed Point (FP) and an Oscillatory Regime (OR) with a well defined proper (natural) frequency. The addition of noise destabilizes the FP phase inducing a transition to a new OR. Surprisingly, it is found that when a periodic signal is added to the control parameter, the system responds robustly, without relevant changes in its behavior. Nevertheless, the Coherent Stochastic Resonance phenomenon is found only at the proper frequency. Also, a method based on SAF allows us to locate very accurately the transition points between the different regimes.



rate research

Read More

In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a-priori unknown, and in general, may fluctuate in time with a given correlation time and statistics, introduces an additional non-demographic step-size noise into the system. Employing the probability generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that bursty influx exponentially decreases the mean escape time compared to the usual case of single-step influx. In particular, close to bifurcation we find a simple analytical expression for the mean escape time, which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte-Carlo simulations.
Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing the dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modelled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parame- ters for finding some analytical approximate solutions. Furthermore, using the local sensitivity method is another important step forward in this study because it helps to identify critical model parameters. Numerical simulations are provided using Matlab for different parameters and initial conditions.
We study the survival of a prey that is hunted by N predators. The predators perform independent random walks on a square lattice with V sites and start a direct chase whenever the prey appears within their sighting range. The prey is caught when a predator jumps to the site occupied by the prey. We analyze the efficacy of a lazy, minimal-effort evasion strategy according to which the prey tries to avoid encounters with the predators by making a hop only when any of the predators appears within its sighting range; otherwise the prey stays still. We show that if the sighting range of such a lazy prey is equal to 1 lattice spacing, at least 3 predators are needed in order to catch the prey on a square lattice. In this situation, we establish a simple asymptotic relation ln(Pev)(t) sim (N/V)2ln(Pimm(t)) between the survival probabilities of an evasive and an immobile prey. Hence, when the density of the predators is low N/V<<1, the lazy evasion strategy leads to the spectacular increase of the survival probability. We also argue that a short-sighting prey (its sighting range is smaller than the sighting range of the predators) undergoes an effective superdiffusive motion, as a result of its encounters with the predators, whereas a far-sighting prey performs a diffusive-type motion.
We study a predator-prey model with Holling type I functional response, an alternative food source for the predator, and multiple Allee effects on the prey. We show that the model has at most two equilibrium points in the first quadrant, one is always a saddle point while the other can be a repeller or an attractor. Moreover, there is always a stable equilibrium point that corresponds to the persistence of the predator population and the extinction of the prey population. Additionally, we show that when the parameters are varied the model displays a wide range of different bifurcations, such as saddle-node bifurcations, Hopf bifurcations, Bogadonov-Takens bifurcations and homoclinic bifurcations. We use numerical simulations to illustrate the impact changing the predation rate, or the non-fertile prey population, and the proportion of alternative food source have on the basins of attraction of the stable equilibrium point in the first quadrant (when it exists). In particular, we also show that the basin of attraction of the stable positive equilibrium point in the first quadrant is bigger when we reduce the depensation in the model.
A predator-prey model of dual populations with stochastic oscillators is presented. A linear cross-coupling between the two populations is introduced following the coupling between the motions of a Wilberforce pendulum in two dimensions: one in the longitudinal and the other in torsional plain. Within each population a Kuramoto type competition between the phases is assumed. Thus, the synchronisation state of the whole system is controlled by these two types of competitions. The results of the numerical simulations show that by adding the linear cross-coupling interactions predator-prey oscillations between the two populations appear which results in self-regulation of the system by a transfer of synchrony between the two populations. The model represents several important features of the dynamical interplay between the drift wave and zonal flow turbulence in magnetically confined plasmas, and a novel interpretation of the coupled dynamics of drift wave-zonal flow turbulence using synchronisation of stochastic oscillator is discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا