Do you want to publish a course? Click here

Pairing in Inhomogeneous Superconductors

156   0   0.0 ( 0 )
 Added by Eroles J.
 Publication date 2000
  fields Physics
and research's language is English
 Authors J. Eroles




Ask ChatGPT about the research

Starting from a t-J model, we introduce inhomogeneous terms to mimic stripes. We find that if the inhomogeneous terms break the SU(2) spin symmetry the binding between holes is tremendously enhanced in the thermodynamic limit. In any other model (including homogeneous models) the binding in the thermodynamic limit is small or neglible. By including these inhomogeneous terms we can reproduce experimental neutron scattering data. We also discuss the connection of the resulting inhomogeneity-induced superconductivity to recent experimental evidence for a linear relation between magnetic incommensurability and the superconducting transition temperature, as a function of doping.

rate research

Read More

211 - N. M. Plakida 2004
A microscopic theory of superconductivity is formulated within an effective $p$-$d$ Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. The antiferromagnetic exchange caused by interband hopping results in pairing of all carries in the conduction subband and high Tc proportional to the Fermi energy. Kinematic interaction in intraband hopping is responsible for the conventional spin-fluctuation pairing. Numerical solution of the gap equation proves the d-wave gap symmetry and defines Tc doping dependence. Oxygen isotope shift and pressure dependence of Tc are also discussed.
We consider a superconductor with surface suppression of the BCS pairing constant $lambda(x)$. We analytically find the gap in the surface density of states (DOS), behavior of the DOS $ u(E)$ above the gap, a vertical peculiarity of the DOS around an energy equal to the bulk order parameter $Delta_0$, and a perturbative correction to the DOS at higher energies. The surface gap in the DOS is parametrically different from the surface value of the order parameter due to a difference between the spatial scale $r_c$, at which $lambda(x)$ is suppressed, and the coherence length. The vertical peculiarity implies an infinite-derivative inflection point of the DOS curve at $E=Delta_0$ with square-root behavior as $E$ deviates from $Delta_0$. The coefficients of this dependence are different at $E<Delta_0$ and $E>Delta_0$, so the peculiarity is asymmetric.
Exact calculations of collective excitations and charge/spin (pseudo)gaps in an ensemble of bipartite and nonbipartite clusters yield level crossing degeneracies, spin-charge separation, condensation and recombination of electron charge and spin, driven by interaction strength, inter-site couplings and temperature. Near crossing degeneracies, the electron configurations of the lowest energies control the physics of electronic pairing, phase separation and magnetic transitions. Rigorous conditions are found for the smooth and dramatic phase transitions with competing stable and unstable inhomogeneities. Condensation of electron charge and spin degrees at various temperatures offers a new mechanism of pairing and a possible route to superconductivity in inhomogeneous systems, different from the BCS scenario. Small bipartite and frustrated clusters exhibit charge and spin inhomogeneities in many respects typical for nano and heterostructured materials. The calculated phase diagrams in various geometries may be linked to atomic scale experiments in high T$_c$ cuprates, manganites and other concentrated transition metal oxides.
A two-orbital model for Fe-pnictide superconductors is investigated using computational techniques on two-dimensional square clusters. The hopping amplitudes are derived from orbital overlap integrals, or by band structure fits, and the spin frustrating effect of the plaquette-diagonal Fe-Fe hopping is remarked. A spin striped state is stable in a broad range of couplings in the undoped regime, in agreement with neutron scattering. Adding two electrons to the undoped ground state of a small cluster, the dominant pairing operators are found. Depending on parameters, two pairing operators were identified: they involve inter-xz-yz orbital combinations forming spin singlets or triplets, transforming according to the B_2g and A_2g representations of the D_4h group, respectively.
We present $^{75}$As nuclear magnetic resonance spin-lattice and spin-spin relaxation rate data in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Ba(Fe$_{1-x}$Cu$_x$)$_2$As$_2$ as a function of temperature, doping and magnetic field. The relaxation curves exhibit a broad distribution of relaxation rates, consistent with inhomogeneous glassy behavior up to 100 K. The doping and temperature response of the width of the dynamical heterogeneity is similar to that of the nematic susceptibility measured by elastoresistance measurements. We argue that quenched random fields which couple to the nematic order give rise to a nematic glass that is reflected in the spin dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا