Do you want to publish a course? Click here

Weak Lensing Mass of Nearby Clusters of Galaxies

72   0   0.0 ( 0 )
 Added by Michael Joffre
 Publication date 1999
  fields Physics
and research's language is English
 Authors M. Joffre




Ask ChatGPT about the research

We describe first results of a project to create weak lensing mass maps for a complete, X-ray luminosity-limited sample of 19 nearby (z < 0.1) southern galaxy clusters scheduled for Sunyaev-Zeldovich observations by the Viper Telescope at the South Pole. We have collected data on 1/3 of the sample and present motivation for the project as well as projected mass maps of two clusters.



rate research

Read More

111 - D. Clowe , G. Luppino , N. Kaiser 1999
We present results of a weak gravitational lensing survey of six X-ray selected high-redshift clusters of galaxies. We find that the masses of the clusters derived from weak lensing are comparable to those derived from the X-ray observations. We show that many of the clusters have significant substructure not observed in the X-ray observations and that for the more massive clusters a singular isothermal sphere does not provide a good fit to the radial mass profile.
The main uncertainty in current determinations of the power spectrum normalization, sigma_8, from abundances of X-ray luminous galaxy clusters arises from the calibration of the mass-temperature relation. We use our weak lensing mass determinations of 30 clusters from the hitherto largest sample of clusters with lensing masses, combined with X-ray temperature data from the literature, to calibrate the normalization of this relation at a temperature of 8 keV, M_{500c,8 keV}=(8.7 +/- 1.6) h^{-1} 10^{14} M_sun. This normalization is consistent with previous lensing-based results based on smaller cluster samples, and with some predictions from numerical simulations, but higher than most normalizations based on X-ray derived cluster masses. Assuming the theoretically expected slope alpha=3/2 of the mass-temperature relation, we derive sigma_8 = 0.88 +/-0.09 for a spatially-flat LambdaCDM universe with Omega_m = 0.3. The main systematic errors on the lensing masses result from extrapolating the cluster masses beyond the field-of-view used for the gravitational lensing measurements, and from the separation of cluster/background galaxies, contributing each with a scatter of 20%. Taking this into account, there is still significant intrinsic scatter in the mass-temperature relation indicating that this relation may not be very tight, at least at the high mass end. Furthermore, we find that dynamically relaxed clusters are 75 +/-40% hotter than non-relaxed clusters.
In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of $left< M_{Planck}/M_{rm WtG} right> = 0.688 pm 0.072$. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of $left< M_{Planck}/M_{rm WtG} right> = 0.698 pm 0.062$ from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are $sim 1.6sigma$ lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for new physics such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.
We introduce a novel method for reconstructing the projected matter distributions of galaxy clusters with weak-lensing (WL) data based on convolutional neural network (CNN). Training datasets are generated with ray-tracing through cosmological simulations. We control the noise level of the galaxy shear catalog such that it mimics the typical properties of the existing ground-based WL observations of galaxy clusters. We find that the mass reconstruction by our multi-layered CNN with the architecture of alternating convolution and trans-convolution filters significantly outperforms the traditional reconstruction methods. The CNN method provides better pixel-to-pixel correlations with the truth, restores more accurate positions of the mass peaks, and more efficiently suppresses artifacts near the field edges. In addition, the CNN mass reconstruction lifts the mass-sheet degeneracy when applied to sufficiently large fields. This implies that this CNN algorithm can be used to measure cluster masses in a model independent way for future wide-field WL surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا