We present results of a weak gravitational lensing survey of six X-ray selected high-redshift clusters of galaxies. We find that the masses of the clusters derived from weak lensing are comparable to those derived from the X-ray observations. We show that many of the clusters have significant substructure not observed in the X-ray observations and that for the more massive clusters a singular isothermal sphere does not provide a good fit to the radial mass profile.
We use weak lensing shear measurements of six z>0.5 clusters of galaxies to derive the mean lensing redshift of the background galaxies used to measure the shear. Five of these clusters are compared to X-ray mass models and verify a mean lensing redshift for a 23<R<26.3, R-I<0.9 background galaxy population in good agreement with photometric redshift surveys of the HDF-S. The lensing strength of the six clusters is also analyzed as a function of the magnitude of the background galaxies, and an increase in shear with increasing magnitude is detected at moderate significance. The change in the strength of the shear is presumed to be caused by an increase in the mean redshift of the background galaxies with increasing magnitude, and the degree of change detected is also in agreement with those in photometric redshift surveys of the HDF-S.
We describe first results of a project to create weak lensing mass maps for a complete, X-ray luminosity-limited sample of 19 nearby (z < 0.1) southern galaxy clusters scheduled for Sunyaev-Zeldovich observations by the Viper Telescope at the South Pole. We have collected data on 1/3 of the sample and present motivation for the project as well as projected mass maps of two clusters.
We present the results of a comprehensive Spitzer survey of 70 radio galaxies across 1<z<5.2. Using IRAC, IRS and MIPS imaging we determine the rest-frame AGN contribution to the stellar emission peak at 1.6um. The stellar luminosities are found to be consistent with that of a giant elliptical with a stellar mass of 10^11-12Msun. The mean stellar mass remains constant at ~10^11.5Msun up to z=3 indicating that the upper end of the mass function is already in place by this redshift. The mid-IR luminosities imply bolometric IR luminosities that would classify all sources as ULIRGs. The mid-IR to radio luminosity generally correlate implying a common origin for these emissions. The ratio is higher than that found for lower redshift, ie z<1, radio galaxies.
High redshift radio galaxies (HzRGs) are key targets for studies of the formation and evolution of massive galaxies. The role of dust in these processes is uncertain. We have therefore observed the dust continuum emission from a sample of z > 3 radio galaxies with the SCUBA bolometer array. We confirm and strengthen earlier results, that HzRGs are massive starforming systems and that submillimeter detection rate appears to be primarily a strong function of redshift. We also observed HzRG-candidates which have sofar eluded spectroscopic redshift determination. Four of these have been detected, and provide evidence that they may be extremely obscured radio galaxies, possibly in an early stage of their evolution.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!