Do you want to publish a course? Click here

A near-infrared study of the planetary nebula NGC 2346

72   0   0.0 ( 0 )
 Added by Leonardo Testi
 Publication date 1998
  fields Physics
and research's language is English
 Authors B. Vicini




Ask ChatGPT about the research

This paper presents new near-infrared observations of the planetary nebula NGC 2346. The data include a broad K-band image, an image in the H2 vibrationally excited 1-0S(1) line and K band slit spectra at three positions in the nebula. In the H2 1-0S(1) line, the nebula is characterized by a central, bright torus, surrounded by weaker emission with a typical butterfly shape, as seen in Halpha and CO lines. The K band spectra show 11 H2 lines with excitation energies from 6150 to 12552 K. The H2 data have been compared to the predictions of models which follow the evolution with time of the H2 emission in PNe of different core mass and shell properties (Natta & Hollenbach 1998). These models compute the emission originating in the photodissociation region (PDR) created at the inner edge of the neutral shell by the UV radiation of the central core, as well as the emission in the shock associated to the expansion of the shell inside the precursor red-giant wind. In NGC 2346, a PDR origin of the H2 emission in a low-density molecular shell (n<~10^4 cm^-3) is indicated. At these low densities, time-dependent H2 chemistry and X-ray heating of the neutral gas enhance the predicted PDR H2 line intensity by large factors.



rate research

Read More

High-resolution HST imaging of the compact planetary nebula NGC 6644 has revealed two pairs of bipolar lobes and a central ring lying close to the plane of the sky. From mid-infrared imaging obtained with the Gemini Telescope, we have found a dust torus which is oriented nearly perpendicular to one pair of the lobes. We suggest that NGC 6644 is a multipolar nebula and have constructed a 3-D model which allows the visualization of the object from different lines of sight. These results suggest that NGC 6644 may have similar intrinsic structures as other multipolar nebulae and the phenomenon of multipolar nebulosity may be more common than previously believed.
We have carried out near-infrared (NIR) imaging observations of the Carina Nebula for an area of ~400 sq. arcmin. including the star clusters Trumpler 14 (Tr 14) and Trumpler 16 (Tr 16). With 10 sigma limiting magnitudes of J ~ 18.5, H ~ 17.5 and K_s ~ 16.5, we identified 544 Class II and 11 Class I young star candidates. We find some 40 previously unknown very red sources with H-K_s > 2, most of which remain undetected at the J band. The red NIR sources are found to be concentrated to the south-east of Tr 16, along the `V shaped dust lane, where the next generation of stars seems to be forming. In addition, we find indications of ongoing star formation near the three MSX point sources, G287.51-0.49, G287.47-0.54, and G287.63-0.72. A handful of red NIR sources are seen to populate around each of these MSX sources. Apart from this, we identified two hard Chandra X-ray sources near G287.47-0.54, one of which does not have an NIR counterpart and may be associated with a Class I/Class 0 object. The majority of the Class II candidates, on the other hand, are seen to be distributed in the directions of the clusters, demarcating different evolutionary stages in this massive star-forming region. A comparison of the color-magnitude diagrams of the clusters with pre-main sequence model tracks shows that the stellar population of these clusters is very young (< 3 Myr). The K_s band luminosity function (KLF) of Tr 14 shows structure at the faint end, including a sharp peak due to the onset of deuterium burning, implying an age of 1-2 Myr for the cluster. The KLF of Tr 16, in contrast, is found to rise smoothly until it turns over. The slopes of the mass functions derived for the clusters are found to be in agreement with the canonical value of the field star initial mass function derived by Salpeter.
We present a near-infrared imaging polarimetric study of the pre-planetary nebula: Frosty Leo. The observations were carried out in J, H and K bands using the new polarimeter POLICAN mounted on the 2.1m telescope of the Guillermo Haro Astrophysical Observatory, Sonora, Mexico. The most prominent result observed in the polarization maps is a large and well defined dusty envelope (35arcsec diameter in H-band). The polarization position angles in the envelope are particularly well ordered and nearly parallel to the equator of the nebula (seen in J and H bands). The nebula presents a known bipolar outflow and the envelope completely wraps around it. Within the bipolar lobes, we find high polarization levels ranging from $60%$ (J band) to $90%$ (K band) and the polarization angles trace a centrosymmetric pattern. We found the remnants of superwind shells at the edges of the bipolar lobes and the duration of this phase is around 600 yrs. The origin of polarization features in the nebula is most likely due to a combination of single and multiple scattering. Our results clearly demonstrate new structures that provide new hints on the evolution of Frosty Leo from its previous asymptotic giant branch phase.
We present high spatial resolution ($approx$ 60--90 milliarcseconds) images of the molecular hydrogen emission in the Planetary Nebula (PN) NGC 2346. The data were acquired during the System Verification of the Gemini Multi-Conjugate Adaptive Optics System + Gemini South Adaptive Optics Imager. At the distance of NGC 2346, 700 pc, the physical resolution corresponds to $approx$ 56 AU, which is slightly higher than that an [N II] image of NGC 2346 obtained with HST/WFPC2. With this unprecedented resolution we were able to study in detail the structure of the H$_2$ gas within the nebula for the first time. We found it to be composed of knots and filaments, which at lower resolution had appeared to be a uniform torus of material. We explain how the formation of the clumps and filaments in this PN is consistent with a mechanism in which a central hot bubble of nebular gas surrounding the central star has been depressurized, and the thermal pressure of the photoionized region drives the fragmentation of the swept-up shell.
We carried out deep and wide (about 8 x 8) JHKs imaging polarimetry in the southern region of the Eagle Nebula (M16). The polarization intensity map reveals that two YSOs with near-IR reflection nebulae are located at the tips of two famous molecular pillars (Pillars 1 and 2) facing toward the exciting stars of M16. The centrosymmetric polarization pattern are consistent with those around class I objects having circumstellar envelopes, confirming that star formation is now taking place at the two tips of the pillars under the influence of UV radiation from the exciting stars. Polarization measurements of point sources show that magnetic fields are aligned along some of the pillars but in a direction that is quite different to the global structure in M16.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا