No Arabic abstract
We have carried out near-infrared (NIR) imaging observations of the Carina Nebula for an area of ~400 sq. arcmin. including the star clusters Trumpler 14 (Tr 14) and Trumpler 16 (Tr 16). With 10 sigma limiting magnitudes of J ~ 18.5, H ~ 17.5 and K_s ~ 16.5, we identified 544 Class II and 11 Class I young star candidates. We find some 40 previously unknown very red sources with H-K_s > 2, most of which remain undetected at the J band. The red NIR sources are found to be concentrated to the south-east of Tr 16, along the `V shaped dust lane, where the next generation of stars seems to be forming. In addition, we find indications of ongoing star formation near the three MSX point sources, G287.51-0.49, G287.47-0.54, and G287.63-0.72. A handful of red NIR sources are seen to populate around each of these MSX sources. Apart from this, we identified two hard Chandra X-ray sources near G287.47-0.54, one of which does not have an NIR counterpart and may be associated with a Class I/Class 0 object. The majority of the Class II candidates, on the other hand, are seen to be distributed in the directions of the clusters, demarcating different evolutionary stages in this massive star-forming region. A comparison of the color-magnitude diagrams of the clusters with pre-main sequence model tracks shows that the stellar population of these clusters is very young (< 3 Myr). The K_s band luminosity function (KLF) of Tr 14 shows structure at the faint end, including a sharp peak due to the onset of deuterium burning, implying an age of 1-2 Myr for the cluster. The KLF of Tr 16, in contrast, is found to rise smoothly until it turns over. The slopes of the mass functions derived for the clusters are found to be in agreement with the canonical value of the field star initial mass function derived by Salpeter.
This paper presents new near-infrared observations of the planetary nebula NGC 2346. The data include a broad K-band image, an image in the H2 vibrationally excited 1-0S(1) line and K band slit spectra at three positions in the nebula. In the H2 1-0S(1) line, the nebula is characterized by a central, bright torus, surrounded by weaker emission with a typical butterfly shape, as seen in Halpha and CO lines. The K band spectra show 11 H2 lines with excitation energies from 6150 to 12552 K. The H2 data have been compared to the predictions of models which follow the evolution with time of the H2 emission in PNe of different core mass and shell properties (Natta & Hollenbach 1998). These models compute the emission originating in the photodissociation region (PDR) created at the inner edge of the neutral shell by the UV radiation of the central core, as well as the emission in the shock associated to the expansion of the shell inside the precursor red-giant wind. In NGC 2346, a PDR origin of the H2 emission in a low-density molecular shell (n<~10^4 cm^-3) is indicated. At these low densities, time-dependent H2 chemistry and X-ray heating of the neutral gas enhance the predicted PDR H2 line intensity by large factors.
We carried out deep and wide (about 8 x 8) JHKs imaging polarimetry in the southern region of the Eagle Nebula (M16). The polarization intensity map reveals that two YSOs with near-IR reflection nebulae are located at the tips of two famous molecular pillars (Pillars 1 and 2) facing toward the exciting stars of M16. The centrosymmetric polarization pattern are consistent with those around class I objects having circumstellar envelopes, confirming that star formation is now taking place at the two tips of the pillars under the influence of UV radiation from the exciting stars. Polarization measurements of point sources show that magnetic fields are aligned along some of the pillars but in a direction that is quite different to the global structure in M16.
Wide-field (~8 x 8) and deep near-infrared (JHKs bands) polarization images of the Orion nebulae (IRNe) around young stellar objects (YSOs), both massive and low-mass. We found the IRNe around both IRc2 and BN to be very extensive, suggesting that there might be two extended (>0.7 pc) bipolar/monopolar IRNe in these sources. We discovered at least 13 smaller-scale (~0.01-0.1 pc) IRNe around less-massive YSOs including the famous source theta^2 Ori C. We also suggest the presence of many unresolved (<690 AU) systems around low-mass YSOs and young brown dwarfs showing possible intrinsic polarizations. Wide-field infrared polarimetry is thus demonstrated to be a powerful technique in revealing IRNe and hence potential disk/outflow systems among high-mass to substellar YSOs.
Linear polarization maps of the Carina Nebula were obtained at 250, 350, and 500 $mu$m during the 2012 flight of the BLASTPol balloon-borne telescope. These measurements are combined with Planck 850 $mu$m data in order to produce a submillimeter spectrum of the polarization fraction of the dust emission, averaged over the cloud. This spectrum is flat to within $pm$15% (relative to the 350 $mu$m polarization fraction). In particular, there is no evidence for a pronounced minimum of the spectrum near 350 $mu$m, as suggested by previous ground-based measurements of other molecular clouds. This result of a flat polarization spectrum in Carina is consistent with recently-published BLASTPol measurements of the Vela C molecular cloud, and also agrees with a published model for an externally-illuminated, dense molecular cloud by Bethell and collaborators. The shape of the spectrum in Carina does not show any dependence on the radiative environment of the dust, as quantified by the Planck-derived dust temperature or dust optical depth at 353 GHz.
We present 0.8-5.2 micron spectroscopy of the compact source at the base of a variable nebula (McNeils Nebula Object) in the Lynds 1630 dark cloud that went into outburst in late 2003. The spectrum of this object reveals an extremely red continuum, CO bands at 2.3-2.5 microns in emission, a deep 3.0 micron ice absorption feature, and a solid state CO absorption feature at 4.7 microns. In addition, emission lines of H, Ca II, Mg I, and Na I are present. The Paschen lines exhibit P Cygni profiles, as do two lines of He I, although the emission features are very weak in the latter. The Brackett lines, however, are seen to be purely in emission. The P Cygni profiles clearly indicate that mass outflow is occurring in a wind with a velocity of ~400 km/s. The H line ratios do not yield consistent estimates of the reddening, nor do they agree with the extinction estimated from the ice feature (A_V ~ 11). We propose that these lines are optically thick and are produced in a dense, ionized wind. The near-infrared spectrum does not appear similar to any known FUor or EXor object. However, all evidence suggests that McNeils Nebula Object is a heavily-embedded low-mass Class I protostar, surrounded by a disk, whose brightening is due to a recent accretion event.