Do you want to publish a course? Click here

A Candidate Protoplanet in the Taurus Star Forming Region

92   0   0.0 ( 0 )
 Added by Terry Hancock
 Publication date 1998
  fields Physics
and research's language is English
 Authors S. Terebey




Ask ChatGPT about the research

HST/NICMOS images of the class I protostar TMR-1 (IRAS04361+2547) reveal a faint companion with 10.0 = 1400 AU projected separation. The central protostar is itself resolved as a close binary with 0.31 = 42 AU separation, surrounded by circumstellar reflection nebulosity. A long narrow filament seems to connect the protobinary to the faint companion TMR-1C, suggesting a physical association. If the sources are physically related then we hypothesize that TMR-1C has been ejected by the protobinary. If TMR-1C has the same age and distance as the protobinary then current models indicate its flux is consistent with a young giant planet of several Jovian masses.



rate research

Read More

277 - G. Aresu , I. Kamp , R. Meijerink 2014
The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..
We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disk but have a weak Halpha line, a common accretion tracer for young stars, to determine whether they host a passive circumstellar disk. We used medium-resolution optical spectroscopy to assess the objects accretion status and to measure the Halpha line. We found no convincing example of passive disks; only transition disk and debris disk systems in our sample are non-accreting. Among accretors, we find no example of flickering accretion, leading to an upper limit of 2.2% on the duty cycle of accretion gaps assuming that all accreting TTS experience such events. Combining literature results with our observations, we find that the reliability of traditional Halpha-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We find a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10%) of the Halpha line that does not seem to be related to variations in free-fall velocity. Finally, our data reveal a positive correlation between the Halpha equivalent width and its W10%, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the Halpha W10% through a common physical mechanism.
104 - K. L. Luhman 2003
Briceno et al. recently used optical imaging, data from the Two-Micron All-Sky Survey (2MASS), and follow-up spectroscopy to search for young low-mass stars and brown dwarfs in 8 square degrees of the Taurus star-forming region. By the end of that study, there remained candidate members of Taurus that lacked the spectroscopic observations needed to measure spectral types and determine membership. In this work, we have obtained spectroscopy of the 22 candidates that have A_V<=8, from which we find six new Taurus members with spectral types of M2.75 through M9. The new M9 source has the second latest spectral type of the known members of Taurus (~0.02 M_sun). Its spectrum contains extremely strong emission in H_alpha (W~950 A) as well as emission in He I 6678 A and the Ca II IR triplet. This is the least massive object known to exhibit emission in He I and Ca II, which together with the strong H_alpha are suggestive of intense accretion.
Mid-infrared spectra of 65 T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope are modeled using dust at two temperatures to probe the radial variation in dust composition in the uppermost layers of protoplanetary disks. Most spectra indicating crystalline silicates require Mg-rich minerals and silica, but a few suggest otherwise. Spectra indicating abundant enstatite at higher temperatures also require crystalline silicates at temperatures lower than those required for spectra showing high abundance of other crystalline silicates. A few spectra show 10 micron complexes of very small equivalent width. They are fit well using abundant crystalline silicates but very few large grains, inconsistent with the expectation that low peak-to-continuum ratio of the 10 micron complex always indicates grain growth. Most spectra in our sample are fit well without using the opacities of large crystalline silicate grains. If large grains grow by agglomeration of submicron grains of all dust types, the amorphous silicate components of these aggregates must typically be more abundant than the crystalline silicate components. Crystalline silicate abundances correlate positively with other such abundances, suggesting that crystalline silicates are processed directly from amorphous silicates and that neither forsterite, enstatite, nor silica are intermediate steps when producing either of the other two. Disks with more dust settling typically have greater crystalline abundances. Large-grain abundance is somewhat correlated with greater settling of disks. The lack of strong correlation is interpreted to mean that settling of large grains is sensitive to individual disk properties. Lower-mass stars have higher abundances of large grains in their inner regions.
Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution ($sim0.12$) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between rings and gaps, and the separations of rings and gaps could all be explained if most gaps are opened by low-mass planets (super-Earths and Neptunes) in the condition of low disk turbulence ($alpha=10^{-4}$). The gap locations are not well correlated with the expected locations of CO and N$_2$ ice lines, so condensation fronts are unlikely to be a universal mechanism to create gaps and rings, though they may play a role in some cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا