Do you want to publish a course? Click here

Dust Processing and Grain Growth in Protoplanetary Disks in the Taurus-Auriga Star-Forming Region

157   0   0.0 ( 0 )
 Added by Benjamin Sargent
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Mid-infrared spectra of 65 T Tauri stars (TTS) taken with the Infrared Spectrograph (IRS) on board the Spitzer Space Telescope are modeled using dust at two temperatures to probe the radial variation in dust composition in the uppermost layers of protoplanetary disks. Most spectra indicating crystalline silicates require Mg-rich minerals and silica, but a few suggest otherwise. Spectra indicating abundant enstatite at higher temperatures also require crystalline silicates at temperatures lower than those required for spectra showing high abundance of other crystalline silicates. A few spectra show 10 micron complexes of very small equivalent width. They are fit well using abundant crystalline silicates but very few large grains, inconsistent with the expectation that low peak-to-continuum ratio of the 10 micron complex always indicates grain growth. Most spectra in our sample are fit well without using the opacities of large crystalline silicate grains. If large grains grow by agglomeration of submicron grains of all dust types, the amorphous silicate components of these aggregates must typically be more abundant than the crystalline silicate components. Crystalline silicate abundances correlate positively with other such abundances, suggesting that crystalline silicates are processed directly from amorphous silicates and that neither forsterite, enstatite, nor silica are intermediate steps when producing either of the other two. Disks with more dust settling typically have greater crystalline abundances. Large-grain abundance is somewhat correlated with greater settling of disks. The lack of strong correlation is interpreted to mean that settling of large grains is sensitive to individual disk properties. Lower-mass stars have higher abundances of large grains in their inner regions.



rate research

Read More

We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disk but have a weak Halpha line, a common accretion tracer for young stars, to determine whether they host a passive circumstellar disk. We used medium-resolution optical spectroscopy to assess the objects accretion status and to measure the Halpha line. We found no convincing example of passive disks; only transition disk and debris disk systems in our sample are non-accreting. Among accretors, we find no example of flickering accretion, leading to an upper limit of 2.2% on the duty cycle of accretion gaps assuming that all accreting TTS experience such events. Combining literature results with our observations, we find that the reliability of traditional Halpha-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We find a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10%) of the Halpha line that does not seem to be related to variations in free-fall velocity. Finally, our data reveal a positive correlation between the Halpha equivalent width and its W10%, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the Halpha W10% through a common physical mechanism.
Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index. We find the fluxes at 70 microns to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.
We characterize the crystalline silicate content and spatial distribution of small dust grains in a large sample of protoplanetary disks in the Taurus-Auriga young cluster, using Spitzer Space Telescope mid-infrared spectra. In turn we use the results to analyze the evolution of structure and composition of these 1-2 Myr-old disks around Solar- and later-type young stars, and test the standard models of dust processing which result in the conversion of originally amorphous dust into minerals. We find strong evidence of evolution of the dust crystalline mass fraction in parallel with that of the structure of the disks, in the sense that increasing crystalline mass fraction is strongly linked to dust settling to the disk midplane. We also confirm that the crystalline silicates are confined to small radii, r < 10 AU. However, we see no significant correlation of crystalline mass fraction with stellar mass or luminosity, stellar accretion rate, disk mass, or disk/star mass ratio, as would be expected in the standard models of dust processing based upon photo-evaporation and condensation close to the central star, accretion-heating-driven annealing at r < 1 AU, or spiral-shock heating at r < 10 AU, with or without effective radial mixing mechanisms. Either another grain-crystallizing mechanism dominates over these, or another process must be at work within the disks to erase the correlations they produce. We propose one of each sort that seem to be worth further investigation, namely X-ray heating and annealing of dust grains, and modulation of disk structure by giant-planetary formation and migration.
195 - Guillaume Laibe 2008
Aims: In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution in disks. Methods: Following the analytic derivation of Stepinski & Valageas (1997), which assumes that grains stick perfectly upon collision, we implement a convenient and fast method of following grain growth in our 3D, two-phase (gas+dust) SPH code. We then follow the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk. Results: We find that the grains go through various stages of growth due to the complex interplay between gas drag, dust dynamics, and growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through the bulk of the disk, and finally pile-up in the inner disk where they grow more efficiently. This results in a bimodal distribution of grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in 10^5 years in the inner disk and survive the fast migration phase.
Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution ($sim0.12$) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between rings and gaps, and the separations of rings and gaps could all be explained if most gaps are opened by low-mass planets (super-Earths and Neptunes) in the condition of low disk turbulence ($alpha=10^{-4}$). The gap locations are not well correlated with the expected locations of CO and N$_2$ ice lines, so condensation fronts are unlikely to be a universal mechanism to create gaps and rings, though they may play a role in some cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا