Do you want to publish a course? Click here

Self-regulating galaxy formation as an explanation for the Tully-Fisher relation

129   0   0.0 ( 0 )
 Added by Gustavo Yepes
 Publication date 1998
  fields Physics
and research's language is English
 Authors D. Elizondo




Ask ChatGPT about the research

Using 3D hydrodynamical simulations of galaxy formation with supernova feedback and a multiphase medium, we derive theoretical relations analogous to the observed Tully-Fisher (TF) relations in various photometric bands. This paper examines the influence of self-regulation mechanisms including supernova feedback on galaxy luminosities and the TF relation in three cosmological scenarios (CDM, Lambda CDM and BSI (broken scale invariance)). The galaxy catalogs derived from our hydrodynamical simulations lead to an acceptably small scatter in the theoretical TF relation amounting to Delta M =0.2-0.4 in the I band, and increasing by 0.1 magnitude from the I-band to the B-band. Our results give strong evidence that the tightness of the TF relation cannot be attributed to supernova feedback alone. However, although eliminating supernova feedback hardly affects the scatter, it does influence the slope of the TF relation quite sensitively. With supernova feedback, L propto V_c^{3-3.5} (depending on the strength of supernova feedback). Without it, L propto V_c^{2} as predicted by the virial theorem with constant M/L. The luminosity functions in the B and K bands are quite sensitive to supernova feedback at the faint end studied here. We find that the faint end of the B-band luminosity function (-18 leq M_B leq -15) has a slope that is steeper than the Stromlo-APM estimate, but in rough agreement with the recent ESO Slice Project estimates.



rate research

Read More

We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC2000) I-band sample; and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3m telescope and the ATNF Parkes telescope from Gurovichs thesis sample (2005). As in MC2000, we re-cast the TF and BTF relations as relationships between baryo n mass and W_{20}. First we report some numerical errors in MC2000. Then, we c alculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the T F relation and that the slopes of the BTF relations are statistically flatter th an the equivalent TF relations. Further, for the fainter galaxies which include the I-band MCG2000 and HI-selected galaxies of Gurovichs thesis sample, we calc ulate a break from a simple power law model because of what appears to be real c osmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller reduced chi^2.
We estimate the stellar masses of disk galaxies with two independent methods: a photometrically self-consistent color$-$mass-to-light ratio relation (CMLR) from population synthesis models, and the Baryonic Tully-Fisher relation (BTFR) calibrated by gas rich galaxies. These two methods give consistent results. The CMLR correctly converts distinct Tully-Fisher relations in different bands into the same BTFR. The BTFR is consistent with $M_b propto V_f^4$ over nearly six decades in mass, with no hint of a change in slope over that range. The intrinsic scatter in the BTFR is negligible, implying that the IMF of disk galaxies is effectively universal. The gas rich BTFR suggests an absolute calibration of the stellar mass scale that yields nearly constant mass-to-light ratios in the near-infrared (NIR): $0.57;M_{odot}/L_{odot}$ in $K_s$ and $0.45;M_{odot}/L_{odot}$ at $3.6mu$. There is only modest intrinsic scatter ($sim 0.12$ dex) about these typical values. There is no discernible variation with color or other properties: the NIR luminosity is a good tracer of stellar mass.
We present a study of the local B and K-band Tully-Fisher Relation (TFR) between absolute magnitude and maximum circular speed in S0 galaxies. To make this study, we have combined kinematic data, including a new high-quality spectral data set from the Fornax Cluster, with homogeneous photometry from the RC3 and 2MASS catalogues, to construct the largest sample of S0 galaxies ever used in a study of the TFR. Independent of environment, S0 galaxies are found to lie systematically below the TFR for nearby spirals in both optical and infrared bands. This offset can be crudely interpreted as arising from the luminosity evolution of spiral galaxies that have faded since ceasing star formation. However, we also find a large scatter in the TFR. We show that most of this scatter is intrinsic, not due to the observational uncertainties. The presence of such a large scatter means that the population of S0 galaxies cannot have formed exclusively by the above simple fading mechanism after all transforming at a single epoch. To better understand the complexity of the transformation mechanism, we have searched for correlations between the offset from the TFR and other properties of the galaxies such as their structural properties, central velocity dispersions and ages (as estimated from line indices). For the Fornax Cluster data, the offset from the TFR relates with the estimated age of the stars in the individual galaxies, in the sense and of the magnitude expected if S0 galaxies had passively faded since being converted from spirals. This correlation implies that a significant part of the scatter in the TFR arises from the different times at which galaxies began their transformation.
84 - R. Giovanelli 1996
The use of the Tully-Fisher (TF) relation for the determination of the Hubble Constant relies on the availability of an adequate template TF relation and of reliable primary distances. Here we use a TF template relation with the best available kinematical zero-point, obtained from a sample of 24 clusters of galaxies extending to cz ~ 9,000 km/s, and the most recent set of Cepheid distances for galaxies fit for TF use. The combination of these two ingredients yields H_not = 69+/-5 km/(s Mpc). The approach is significantly more accurate than the more common application with single cluster (e.g. Virgo, Coma) samples.
We present predictions on the evolution of the Tully-Fisher (TF) relation with redshift, based on cosmological N-body/hydrodynamical simulations of disc galaxy formation and evolution. The simulations invoke star formation and stellar feedback, chemical evolution with non-instantaneous recycling, metallicity dependent radiative cooling and effects of a meta-galactic UV field, including simplified radiative transfer. At z=0, the simulated and empirical TF relations are offset by about 0.4 magnitudes (1 sigma) in the B and I bands. The origin of these offsets is somewhat unclear, but it may not necessarily be a problem of the simulations only. As to evolution, we find a brightening of the TF relation between z=0 and z=1 of about 0.85 mag in rest-frame B band, with a non-evolving slope. The brightening we predict is intermediate between the (still quite discrepant) observational estimates. This evolution is primarily a luminosity effect, while the stellar mass TF relation shows negligible evolution. The individual galaxies do gain stellar mass between z=1 and z=0, by a 50-100%; but they also correspondingly increase their characteristic circular speed. As a consequence, individually they mainly evolve ALONG the stellar mass TF relation, while the relation as such does not show any significant evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا