Do you want to publish a course? Click here

The Tully-Fisher Relation and H_not

85   0   0.0 ( 0 )
 Added by Riccardo Giovanelli
 Publication date 1996
  fields Physics
and research's language is English
 Authors R. Giovanelli




Ask ChatGPT about the research

The use of the Tully-Fisher (TF) relation for the determination of the Hubble Constant relies on the availability of an adequate template TF relation and of reliable primary distances. Here we use a TF template relation with the best available kinematical zero-point, obtained from a sample of 24 clusters of galaxies extending to cz ~ 9,000 km/s, and the most recent set of Cepheid distances for galaxies fit for TF use. The combination of these two ingredients yields H_not = 69+/-5 km/(s Mpc). The approach is significantly more accurate than the more common application with single cluster (e.g. Virgo, Coma) samples.



rate research

Read More

We validate the baryonic Tully Fisher (BTF) relation by exploring the Tully Fish er (TF) and BTF properties of optically and HI-selected disk galaxies. The data includes galaxies from: Sakai et al. (2000) calibrator sample; McGaugh et al. (2000: MC2000) I-band sample; and 18 newly acquired HI-selected field dwarf galaxies observed with the ANU 2.3m telescope and the ATNF Parkes telescope from Gurovichs thesis sample (2005). As in MC2000, we re-cast the TF and BTF relations as relationships between baryo n mass and W_{20}. First we report some numerical errors in MC2000. Then, we c alculate weighted bi-variate linear fits to the data, and finally we compare the fits of the intrinsically fainter dwarfs with the brighter galaxies of Sakai et al. (2000). With regards to the local calibrator disk galaxies of Sakai et al. (2000), our results suggest that the BTF relation is indeed tighter than the T F relation and that the slopes of the BTF relations are statistically flatter th an the equivalent TF relations. Further, for the fainter galaxies which include the I-band MCG2000 and HI-selected galaxies of Gurovichs thesis sample, we calc ulate a break from a simple power law model because of what appears to be real c osmic scatter. Not withstanding this point, the BTF models are marginally better models than the equivalent TF ones with slightly smaller reduced chi^2.
We present a study of the local B and K-band Tully-Fisher Relation (TFR) between absolute magnitude and maximum circular speed in S0 galaxies. To make this study, we have combined kinematic data, including a new high-quality spectral data set from the Fornax Cluster, with homogeneous photometry from the RC3 and 2MASS catalogues, to construct the largest sample of S0 galaxies ever used in a study of the TFR. Independent of environment, S0 galaxies are found to lie systematically below the TFR for nearby spirals in both optical and infrared bands. This offset can be crudely interpreted as arising from the luminosity evolution of spiral galaxies that have faded since ceasing star formation. However, we also find a large scatter in the TFR. We show that most of this scatter is intrinsic, not due to the observational uncertainties. The presence of such a large scatter means that the population of S0 galaxies cannot have formed exclusively by the above simple fading mechanism after all transforming at a single epoch. To better understand the complexity of the transformation mechanism, we have searched for correlations between the offset from the TFR and other properties of the galaxies such as their structural properties, central velocity dispersions and ages (as estimated from line indices). For the Fornax Cluster data, the offset from the TFR relates with the estimated age of the stars in the individual galaxies, in the sense and of the magnitude expected if S0 galaxies had passively faded since being converted from spirals. This correlation implies that a significant part of the scatter in the TFR arises from the different times at which galaxies began their transformation.
The Tully-Fisher Relation (TFR) links two fundamental properties of disk galaxies: their luminosity and their rotation velocity (mass). The pioneering work of Vogt et al. in the 1990s showed that it is possible to study the TFR for spiral galaxies at considerable look-back-times, and use it as a powerful probe of their evolution. In recent years, several groups have studied the TFR for galaxies in different environments reaching redshifts beyond one. In this brief review I summarise the main results of some of these studies and their consequences for our understanding of the formation and evolution of disk galaxies. Particular emphasis is placed on the possible environment-driven differences in the behaviour of the TFR for field and cluster galaxies.
We examine the evolution of the Tully-Fisher relation (TFR) using a sample of 89 field spirals, with 0.1 < z < 1, for which we have measured confident rotation velocities (Vrot). By plotting the residuals from the local TFR versus redshift, or alternatively fitting the TFR to our data in several redshift bins, we find evidence that luminous spiral galaxies are increasingly offset from the local TFR with redshift, reaching a brightening of -1.0+-0.5 mag, for a given Vrot, by approximately z = 1. Since selection effects would generally increase the fraction of intrinsically-bright galaxies at higher redshifts, we argue that the observed evolution is probably an upper limit. Previous studies have used an observed correlation between the TFR residuals and Vrot to argue that low mass galaxies have evolved significantly more than those with higher mass. However, we demonstrate that such a correlation may exist purely due to an intrinsic coupling between the Vrot scatter and TFR residuals, acting in combination with the TFR scatter and restrictions on the magnitude range of the data, and therefore it does not necessarily indicate a physical difference in the evolution of galaxies with different Vrot. Finally, if we interpret the luminosity evolution derived from the TFR as due to the evolution of the star formation rate (SFR) in these luminous spiral galaxies, we find that SFR(z) is proportional to (1+z)^(1.7+-1.1), slower than commonly derived for the overall field galaxy population. This suggests that the rapid evolution in the SFR density of the universe observed since approximately z = 1 is not driven by the evolution of the SFR in individual bright spiral galaxies. (Abridged.)
145 - S. P. Bamford 2005
We have measured maximum rotation velocities (Vrot) for a sample of 111 emission-line galaxies with 0.1 < z < 1, observed in the fields of 6 clusters. From these data we construct matched samples of 58 field and 22 cluster galaxies, covering similar ranges in redshift (0.25 < z < 1.0) and luminosity (M_B < -19.5 mag), and selected in a homogeneous manner. We find the distributions of M_B, Vrot, and scalelength, to be very similar for the two samples. However, using the Tully-Fisher relation (TFR) we find that cluster galaxies are systematically offset with respect to the field sample by -0.7+-0.2 mag. This offset is significant at 3 sigma and persists when we account for an evolution of the field TFR with redshift. Extensive tests are performed to investigate potential differences between the measured emission lines and derived rotation curves of the cluster and field samples. However, no such differences which could affect the derived Vrot values and account for the offset are found. The most likely explanation for the TFR offset is that giant spiral galaxies in distant clusters are on average brighter, for a given rotation velocity, than those in the field. We discuss the potential mechanisms responsible for this, and consider alternative explanations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا