Do you want to publish a course? Click here

The Magnetic Topology of Solar Eruptions

55   0   0.0 ( 0 )
 Added by Spiro K. Antiochos
 Publication date 1998
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an explanation for the well-known observation that complexity of the solar magnetic field is a necessary ingredient for strong activity such as large eruptive flares. Our model starts with the standard picture for the energy build up -- highly-sheared, newly-emerged magnetic field near the photospheric neutral line held down by overlying unsheared field. Previously, we proposed the key new idea that magnetic reconnection between the unsheared field and neighboring flux systems decreases the amount of overlying field and, thereby, allows the low-lying sheared flux to ``break out (Antiochos, DeVore and Klimchuk 1998, ApJ, submitted). In this paper we show that a bipolar active region does not have the necessary complexity for this process to occur, but a delta sunspot has the right topology for magnetic breakout. We discuss the implications of these results for observations from SOHO and TRACE.



rate research

Read More

We present the analysis of an unusual failed eruption captured in high cadence and in many wavelengths during the observing campaign in support of the VAULT2.0 sounding rocket launch. The refurbished Very high Angular resolution Ultraviolet Telescope (VAULT2.0) is a Ly$alpha$ ($lambda$ 1216 {AA}) spectroheliograph launched on September 30, 2014. The campaign targeted active region NOAA AR 12172 and was closely coordinated with the Hinode and IRIS missions and several ground-based observatories (NSO/IBIS, SOLIS, and BBSO). A filament eruption accompanied by a low level flaring event (at the GOES C-class level) occurred around the VAULT2.0 launch. No Coronal Mass Ejection (CME) was observed. The eruption and its source region, however, were recorded by the campaign instruments in many atmospheric heights ranging from the photosphere to the corona in high cadence and spatial resolution. This is a rare occasion which enables us to perform a comprehensive investigation on a failed eruption. We find that a rising Magnetic Flux Rope-like (MFR) structure was destroyed during its interaction with the ambient magnetic field creating downflows of cool plasma and diffuse hot coronal structures reminiscent of cusps. We employ magnetofrictional simulations to show that the magnetic topology of the ambient field is responsible for the destruction of the MFR. Our unique observations suggest that the magnetic topology of the corona is a key ingredient for a successful eruption.
Solar flares and coronal mass ejections (CMEs), especially the larger ones, emanate from active regions (ARs). With the aim to understand the magnetic properties that govern such flares and eruptions, we systematically survey all flare events with GOES levels of >=M5.0 within 45 deg from disk center between May 2010 and April 2016. These criteria lead to a total of 51 flares from 29 ARs, for which we analyze the observational data obtained by the Solar Dynamics Observatory. More than 80% of the 29 ARs are found to exhibit delta-sunspots and at least three ARs violate Hales polarity rule. The flare durations are approximately proportional to the distance between the two flare ribbons, to the total magnetic flux inside the ribbons, and to the ribbon area. From our study, one of the parameters that clearly determine whether a given flare event is CME-eruptive or not is the ribbon area normalized by the sunspot area, which may indicate that the structural relationship between the flaring region and the entire AR controls CME productivity. AR characterization show that even X-class events do not require delta-sunspots or strong-field, high-gradient polarity inversion lines. An investigation of historical observational data suggests the possibility that the largest solar ARs, with magnetic flux of 2x10^23 Mx, might be able to produce superflares with energies of order of 10^34 erg. The proportionality between the flare durations and magnetic energies is consistent with stellar flare observations, suggesting a common physical background for solar and stellar flares.
194 - V. S. Titov , Z. Mikic , T. Torok 2012
A sequence of apparently coupled eruptions was observed on 2010 August 1-2 by SDO and STEREO. The eruptions were closely synchronized with one another, even though some of them occurred at widely separated locations. In an attempt to identify a plausible reason for such synchronization, we study the large-scale structure of the background magnetic configuration. The coronal field was computed from the photospheric magnetic field observed at the appropriate time period by using the potential field source-surface model. We investigate the resulting field structure by analyzing the so-called squashing factor calculated at the photospheric and source-surface boundaries, as well as at different coronal cross-sections. Using this information as a guide, we determine the underlying structural skeleton of the configuration, including separatrix and quasi-separatrix surfaces. Our analysis reveals, in particular, several pseudo-streamers in the regions where the eruptions occurred. Of special interest to us are the magnetic null points and separators associated with the pseudo-streamers. We propose that magnetic reconnection triggered along these separators by the first eruption likely played a key role in establishing the assumed link between the sequential eruptions. The present work substantiates our recent simplified magnetohydrodynamic model of sympathetic eruptions and provides a guide for further deeper study of these phenomena. Several important implications of our results for the S-web model of the slow solar wind are also addressed.
We investigate the oscillatory properties of the quiet solar chromosphere in relation to the underlying photosphere, with particular regard to the effects of the magnetic topology. We perform a Fourier analysis on a sequence of line-of-sight velocities measured simultaneously in a photospheric (Fe I 709.0 nm) and a chromospheric line (Ca II 854.2 nm). The velocities were obtained from full spectroscopic data acquired at high spatial resolution with the Interferometric BIdimensional Spectrometer (IBIS). The field of view encompasses a full supergranular cell, allowing us to discriminate between areas with different magnetic characteristics. We show that waves with frequencies above the acoustic cut-off propagate from the photosphere to upper layers only in restricted areas of the quiet Sun. A large fraction of the quiet chromosphere is in fact occupied by ``magnetic shadows, surrounding network regions, that we identify as originating from fibril-like structures observed in the core intensity of the Ca II line. We show that a large fraction of the chromospheric acoustic power at frequencies below the acoustic cut-off, residing in the proximity of the magnetic network elements, directly propagates from the underlying photosphere. This supports recent results arguing that network magnetic elements can channel low-frequency photospheric oscillations into the chromosphere, thus providing a way to input mechanical energy in the upper layers.
108 - I. M. Chertok 2014
Solar coronal mass ejections (CMEs) are main drivers of the most powerful non-recurrent geomagnetic storms. In the extreme-ultraviolet range, CMEs are accompanied by bright post-eruption arcades and dark dimmings. The analysis of events of the Solar Cycle 23 (Chertok et al., 2013, Solar Phys. 282, 175) revealed that the summarized unsigned magnetic flux in the arcades and dimming regions at the photospheric level, $Phi$, is significantly related to the intensity (Dst index) of geomagnetic storms. This provides the basis for the earliest diagnosis of geoefficiency of solar eruptions. In the present article, using the same data set, we find that a noticeable correlation exists also between the eruptive magnetic flux, $Phi$, and another geomagnetic index, Ap. As the magnetic flux increases from tens to $approx 500$ (in units of $10^{20}$ Mx), the geomagnetic storm intensity measured by the 3-hour Ap index, enhances in average from Ap $approx 50$ to a formally maximum value of 400 (in units of 2 nT). The established relationship shows that in fact the real value of the Ap index is not limited and during the most severe magnetic storms may significantly exceed 400.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا