Do you want to publish a course? Click here

Tev Observations of the Variability and Spectrum of Markarian 421

72   0   0.0 ( 0 )
 Added by Julie E. McEnery
 Publication date 1997
  fields Physics
and research's language is English




Ask ChatGPT about the research

Markarian 421 was the first extragalactic source to be detected with high statistical certainty at TeV energies. The Whipple Observatory gamma-ray telescope has been used to observe the Active Galactic Nucleus, Markarian 421 in 1996 and 1997. The rapid variability observed in TeV gamma rays in previous years is confirmed. Doubling times as short as 15 minutes are reported with flux levels reaching 15 photons per minute. The TeV energy spectrum is derived using two independent methods. The implications for the intergalactic infra-red medium of an observed unbroken power law spectrum up to energies of 5 TeV is discussed.



rate research

Read More

68 - J. Quinn , I.H. Bond , P.J. Boyle 1997
Markarian 501 is only the second extragalactic source to be detected with high statistical certainty at TeV energies; it is similar in many ways to Markarian 421. The Whipple Observatory gamma-ray telescope has been used to observe the AGN Markarian 501 in 1996 and 1997, the years subsequent to its initial detection. The apparent variability on the one-day time-scale observed in TeV gamma rays in 1995 is confirmed and compared with the variability in Markarian 421. Observations at X-ray and optical wavelengths from 1997 are also presented.
The detection of spectral variability of the gamma-ray blazar Mrk 421 at TeV energies is reported. Observations with the Whipple Observatory 10m gamma-ray telescope taken in 2000/2001 revealed exceptionally strong and long-lasting flaring activity. Flaring levels of 0.4 to 13 times that of the Crab Nebula flux provided sufficient statistics for a detailed study of the energy spectrum between 380 GeV and 8.2 TeV as a function of flux level. These spectra are well described by a power law with an exponential cutoff. There is no evidence for variation in the cutoff energy with flux, and all spectra are consistent with an average value for the cutoff energy of 4.3 TeV. The spectral index varies between 1.89 in a high flux state and 2.72 in a low state. The correlation between spectral index and flux is tight when averaging over the total 2000/2001 data set. Spectral measurements of Mrk~421 from previous years (1995/96 and 1999) by the Whipple collaboration are consistent with this flux-spectral index correlation, which suggest that this may be a constant or a long-term property of the source. If a similar flux-spectral index correlation were found for other gamma-ray blazars, this universal property could help disentangle the intrinsic emission mechanism from external absorption effects.
250 - G. Fossati 2008
(Abridged) We present a detailed analysis of week-long simultaneous observations of the blazar Mrk421 at 2-60 keV X-rays (RXTE) and TeV gamma-rays (Whipple and HEGRA) in 2001. The unprecedented quality of this dataset enables us to establish firmly the existence of the correlation between the TeV and X-ray luminosities, and to start unveiling some of its more detailed characteristics, in particular its energy dependence, and time variability. The source shows strong, highly correlated variations in X-ray and gamma-ray. No evidence of X-ray/gamma-ray interband lag is found on the full week dataset (<3 ks). However, a detailed analysis of the March 19 flare reveals that data are not consistent with the peak of the outburst in the 2-4 keV X-ray and TeV band being simultaneous. We estimate a 2.1+/-0.7 ks TeV lag. The amplitudes of the X-ray and gamma-ray variations are also highly correlated, and the TeV luminosity increases more than linearly w.r.t. the X-ray one. The strong correlation supports the standard model in which a unique electrons population produces the X-rays by synchrotron radiation and the gamma-ray component by inverse Compton scattering. However, for the individual best observed flares the gamma-ray flux scales approximately quadratically w.r.t. the X-ray flux, posing a serious challenge to emission models for TeV blazars. Rather special conditions and/or fine tuning of the temporal evolution of the physical parameters of the emission region are required in order to reproduce the quadratic correlation.
Exceptionally strong and long lasting flaring activity of the blazar Markarian 421 (Mrk 421) occurred between January and March 2001. Based on the excellent signal-to-noise ratio of the data we derive the energy spectrum between 260 GeV - 17 TeV with unprecedented statistical precision. The spectrum is not well described by a simple power law even with a curvature term. Instead the data can be described by a power law with exponential cutoff: $rm {{dN}over{dE}} propto rm E^{-2.14 pm 0.03_{stat}} times e^{-E/E_{0}} m^{-2} s^{-1} TeV^{-1}$ with $rm E_{0} = 4.3 pm 0.3_{stat} TeV$. Mrk 421 is the second $gamma$-ray blazar that unambiguously exhibits an absorption-like feature in its spectral energy distribution at 3-6 TeV suggesting that this may be a universal phenomenon, possibly due to the extragalactic infra-red background radiation.
The Major Atmospheric Gamma Imaging Cerenkov (MAGIC) telescope participated in three multiwavelength (MWL) campaigns, observing the blazar Markarian (Mkn) 421 during the nights of 2006 April 28, 29, and 2006 June 14. We analyzed the corresponding MAGIC very-high energy observations during 9 nights from 2006 April 22 to 30 and on 2006 June 14. We inferred light curves with sub-day resolution and night-by-night energy spectra. A strong gamma-ray signal was detected from Mkn 421 on all observation nights. The flux (E > 250 GeV) varied on night-by-night basis between (0.92+-0.11)10^-10 cm^-2 s^-1 (0.57 Crab units) and (3.21+-0.15)10^-10 cm^-2 s^-1 (2.0 Crab units) in 2006 April. There is a clear indication for intra-night variability with a doubling time of 36+-10(stat) minutes on the night of 2006 April 29, establishing once more rapid flux variability for this object. For all individual nights gamma-ray spectra could be inferred, with power-law indices ranging from 1.66 to 2.47. We did not find statistically significant correlations between the spectral index and the flux state for individual nights. During the June 2006 campaign, a flux substantially lower than the one measured by the Whipple 10-m telescope four days later was found. Using a log-parabolic power law fit we deduced for some data sets the location of the spectral peak in the very-high energy regime. Our results confirm the indications of rising peak energy with increasing flux, as expected in leptonic acceleration models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا