Markarian 501 is only the second extragalactic source to be detected with high statistical certainty at TeV energies; it is similar in many ways to Markarian 421. The Whipple Observatory gamma-ray telescope has been used to observe the AGN Markarian 501 in 1996 and 1997, the years subsequent to its initial detection. The apparent variability on the one-day time-scale observed in TeV gamma rays in 1995 is confirmed and compared with the variability in Markarian 421. Observations at X-ray and optical wavelengths from 1997 are also presented.
Markarian 421 was the first extragalactic source to be detected with high statistical certainty at TeV energies. The Whipple Observatory gamma-ray telescope has been used to observe the Active Galactic Nucleus, Markarian 421 in 1996 and 1997. The rapid variability observed in TeV gamma rays in previous years is confirmed. Doubling times as short as 15 minutes are reported with flux levels reaching 15 photons per minute. The TeV energy spectrum is derived using two independent methods. The implications for the intergalactic infra-red medium of an observed unbroken power law spectrum up to energies of 5 TeV is discussed.
Aims: We investigate the one-zone SSC model of TeV blazars in the presence of electron acceleration. In this picture electrons reach a maximum energy where acceleration saturates from a combination of synchrotron and inverse Compton scattering losses. Methods: We solve the spatially averaged kinetic equations which describe the simultaneous evolution of particles and photons, obtaining the multi-wavelength spectrum as a function of time. Results: We apply the model to the rapid flare of Mrk 501 of July 9, 2005 as this was observed by the MAGIC telescope and obtain the relevant parameters for the pre-flare quasi steady state and the ones during the flare. We show that a hard lag flare can be obtained with parameters which lie well within the range already accepted for this source. Especially the choice of a high value of the Doppler factor seems to be necessary.
We will report the observations of TeV gamma ray flares from Markarian 501 using Telescope Array Prototype. The observation were carried out continuously from the end of March to the end of July in 1997. The energy spectrum, and the time variation of the gamma ray intensities are shown. The intensity has been changed by the order of magnitude in this period and the possible quasi periodic oscillation of 12.7days were discovered.
Markarian 501, a nearby (z=0.033) X-ray selected BL Lacertae object, is a well established source of Very High Energy (VHE, E>=300 GeV) gamma rays. Dramatic variability in its gamma-ray emission on time-scales from years to as short as two hours has been detected. Multiwavelength observations have also revealed evidence that the VHE gamma-ray and hard X-ray fluxes may be correlated. Here we present results of observations made with the Whipple Collaborations 10 m Atmospheric Cerenkov Imaging Telescope during 1999 and discuss them in the context of observations made on Markarian 501 during the period from 1996-1998.
Between March 16, 1997 and April 14, 1997, a high flux level of TeV gamma-rays was observed from Mkn 501, using the HEGRA stereoscopic system of four imaging Cherenkov telescopes. The flux level varied during this period from about one half up to six times the flux observed from the Crab Nebula. Changes of the detection rate by a factor of up to 4 within 1 day have been observed. The measured differential energy spectrum of the radiation follows a power law from 1 TeV to 10 TeV. The differential spectral index of 2.47{+-}0.07{+-}0.25 is close to that of the Crab Nebula of 2.66{+-}0.12{+-}0.25.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!