No Arabic abstract
We outline our recently started program to investigate the galaxy environment of QSOs, in particular of radio-quiet objects at intermediate redshifts.
Sources at the brightest end of QSO luminosity function during the peak epoch of star formation and black hole accretion (z~2-4, i.e. Cosmic noon) are privileged sites to study the feeding & feedback cycle of massive galaxies. We perform the first systematic study of cold gas properties in the most luminous QSOs, by characterising their host-galaxies and environment. We analyse ALMA, NOEMA and JVLA observations of FIR continuum, CO and [CII] emission lines in eight QSOs ($L_{rm Bol}>3times10^{47}$ erg/s) from the WISSH sample at z~2.4-4.7. We report a 100% emission line detection rate and a 80% detection rate in continuum emission, and we find CO emission to be consistent with the steepest CO ladders observed so far. Sub-mm data reveal presence of (one or more) bright companion galaxies around 80% of WISSH QSOs, at projected distances of 6-130 kpc. We observe a variety of sizes for the molecular gas reservoirs (1.7-10 kpc), associated with rotating disks with disturbed kinematics. WISSH QSOs typically show lower CO luminosity and higher star formation efficiency than FIR matched, z~0-3 main-sequence galaxies, implying that, given the observed SFR ~170-1100 $M_odot$/yr, molecular gas is converted into stars on <50 Myr. Most targets show extreme dynamical to black-hole mass ratios $M_{rm dyn}/M_{rm BH}sim3-10$, two orders of magnitude smaller than local relations. The molecular gas fraction in WISSH hosts is lower by a factor of ~10-100 than in star forming galaxies with similar $M_*$. WISSH QSOs undergo an intense growth phase of both the central SMBH and host-galaxy. They pinpoint high-density sites where giant galaxies assemble and mergers play a major role in the build-up of the final host-galaxy mass. The observed low molecular gas fraction and short depletion timescale are likely due to AGN feedback, as traced by fast AGN-driven ionised outflows in all our targets.
Galaxies form and evolve in the context of their local and large-scale environments. Their baryonic content that we observe with imaging and spectroscopy is intimately connected to the properties of their dark matter halos, and to their location in the cosmic web of large-scale structure. Very large spectroscopic surveys of the local universe (e.g., SDSS and GAMA) measure galaxy positions (location within large-scale structure), statistical clustering (a direct constraint on dark matter halo masses), and spectral features (measuring physical conditions of the gas and stars within the galaxies, as well as internal velocities). Deep surveys with the James Webb Space Telescope (JWST) will revolutionize spectroscopic measurements of redshifts and spectral properties for galaxies out to the epoch of reionization, but with numerical statistics and over cosmic volumes that are too small to map large-scale structure and to constrain halo properties via clustering. Here, we consider advances in understanding galaxy evolution that would be enabled by very large spectroscopic surveys at high redshifts: very large numbers of galaxies (outstanding statistics) over large co-moving volumes (large-scale structure on all scales) over broad redshift ranges (evolution over most of cosmic history). The required observational facility can be established as part of the probe portfolio by NASA within the next decade.
We have used the Arecibo L-band Feed Array to map three regions, each of 5 square degrees, around the isolated galaxies NGC 1156, UGC 2082, and NGC 5523. In the vicinity of these galaxies we have detected two dwarf companions: one near UGC 2082, previously discovered by ALFALFA, and one near NGC 1156, discovered by this project and reported in an earlier paper. This is significantly fewer than the 15.4 $^{+1.7}_{-1.5}$ that would be expected from the field HI mass function from ALFALFA or the 8.9 $pm$ 1.2 expected if the HI mass function from the Local Group applied in these regions. The number of dwarf companions detected is, however, consistent with a flat or declining HI mass function as seen by a previous, shallower, HI search for companions to isolated galaxies.We attribute this difference in Hi mass functions to the different environments in which they are measured. This agrees with the general observation that lower ratios of dwarf to giant galaxies are found in lower density environments.
Taipan is a multi-object spectroscopic galaxy survey starting in 2017 that will cover 2pi steradians over the southern sky, and obtain optical spectra for about two million galaxies out to z<0.4. Taipan will use the newly-refurbished 1.2m UK Schmidt Telescope at Siding Spring Observatory with the new TAIPAN instrument, which includes an innovative Starbugs positioning system capable of rapidly and simultaneously deploying up to 150 spectroscopic fibres (and up to 300 with a proposed upgrade) over the 6-deg diameter focal plane, and a purpose-built spectrograph operating from 370 to 870nm with resolving power R>2000. The main scientific goals of Taipan are: (i) to measure the distance scale of the Universe (primarily governed by the local expansion rate, H_0) to 1% precision, and the structure growth rate of structure to 5%; (ii) to make the most extensive map yet constructed of the mass distribution and motions in the local Universe, using peculiar velocities based on improved Fundamental Plane distances, which will enable sensitive tests of gravitational physics; and (iii) to deliver a legacy sample of low-redshift galaxies as a unique laboratory for studying galaxy evolution as a function of mass and environment. The final survey, which will be completed within 5 years, will consist of a complete magnitude-limited sample (i<17) of about 1.2x10^6 galaxies, supplemented by an extension to higher redshifts and fainter magnitudes (i<18.1) of a luminous red galaxy sample of about 0.8x10^6 galaxies. Observations and data processing will be carried out remotely and in a fully-automated way, using a purpose-built automated virtual observer software and an automated data reduction pipeline. The Taipan survey is deliberately designed to maximise its legacy value, by complementing and enhancing current and planned surveys of the southern sky at wavelengths from the optical to the radio.
We study the cluster environment for a sample of 21 radio loud AGN from the 3CR catalog at z>1, 12 radio galaxies and 9 quasars with HST images in the optical and IR. We use two different approaches to determine cluster candidates. We identify the early type galaxies (ETGs) in every field by modeling each of the sources within a 40 radius of the targets with a Sersic profile. Using a simple passive evolution model, we derive the expected location of the ETGs on the red sequence (RS) in the color-magnitude diagram for each of the fields of our sources. For seven targets, the model coincides with the position of the ETGs. A second approach involves a search for over densities. We compare the object densities of the sample as a whole and individually against control fields taken from the GOODS-S region of 3D-HST survey. With this method we determine the fields of 10 targets to be cluster candidates. Four cluster candidates are found by both methods. The two methods disagree in some cases, depending on the specific properties of each field. For the most distant radio galaxy in the 3CR catalog (3C257 at z = 2.47), we identify a population of bluer ETGs that lie on the expected location of the RS model for that redshift. This appears to be the general behavior of ETGs in our fields and it is possibly a signature of the evolution of such galaxies. Our results are consistent with half of the z > 1 radio galaxies being located in dense, rapidly evolving environments.