Do you want to publish a course? Click here

Observing Galaxy Evolution in the Context of Large-Scale Structure

101   0   0.0 ( 0 )
 Added by Yun Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Galaxies form and evolve in the context of their local and large-scale environments. Their baryonic content that we observe with imaging and spectroscopy is intimately connected to the properties of their dark matter halos, and to their location in the cosmic web of large-scale structure. Very large spectroscopic surveys of the local universe (e.g., SDSS and GAMA) measure galaxy positions (location within large-scale structure), statistical clustering (a direct constraint on dark matter halo masses), and spectral features (measuring physical conditions of the gas and stars within the galaxies, as well as internal velocities). Deep surveys with the James Webb Space Telescope (JWST) will revolutionize spectroscopic measurements of redshifts and spectral properties for galaxies out to the epoch of reionization, but with numerical statistics and over cosmic volumes that are too small to map large-scale structure and to constrain halo properties via clustering. Here, we consider advances in understanding galaxy evolution that would be enabled by very large spectroscopic surveys at high redshifts: very large numbers of galaxies (outstanding statistics) over large co-moving volumes (large-scale structure on all scales) over broad redshift ranges (evolution over most of cosmic history). The required observational facility can be established as part of the probe portfolio by NASA within the next decade.



rate research

Read More

Next generation CMB experiments with arcmin resolution will, for free, lay the foundations for a real breakthrough on the study of the early evolution of galaxies and galaxy clusters, thanks to the detection of large samples of strongly gravitationally lensed galaxies and of proto-clusters of dusty galaxies up to high redshifts. This has an enormous legacy value. High resolution follow-up of strongly lensed galaxies will allow the direct investigation of their structure and kinematics up to z~6, providing direct information on physical processes driving their evolution. Follow-up of proto-clusters will allow an observational validation of the formation history of the most massive dark matter halos up to z~4, well beyond the redshift range accessible via X-ray or SZ measurements. These experiments will also allow a giant leap forward in the determination of polarization properties of extragalactic sources, and will provide a complete census of cold dust available for star formation in the local universe.
The Pan-Andromeda Archaeological Survey is a survey of $>400$ square degrees centered on the Andromeda (M31) and Triangulum (M33) galaxies that has provided the most extensive panorama of a $L_star$ galaxy group to large projected galactocentric radii. Here, we collate and summarise the current status of our knowledge of the substructures in the stellar halo of M31, and discuss connections between these features. We estimate that the 13 most distinctive substructures were produced by at least 5 different accretion events, all in the last 3 or 4 Gyrs. We suggest that a few of the substructures furthest from M31 may be shells from a single accretion event. We calculate the luminosities of some prominent substructures for which previous estimates were not available, and we estimate the stellar mass budget of the outer halo of M31. We revisit the problem of quantifying the properties of a highly structured dataset; specifically, we use the OPTICS clustering algorithm to quantify the hierarchical structure of M31s stellar halo, and identify three new faint structures. M31s halo, in projection, appears to be dominated by two `mega-structures, that can be considered as the two most significant branches of a merger tree produced by breaking M31s stellar halo into smaller and smaller structures based on the stellar spatial clustering. We conclude that OPTICS is a powerful algorithm that could be used in any astronomical application involving the hierarchical clustering of points. The publication of this article coincides with the public release of all PAndAS data products.
There is compelling evidence for a highly energetic Seyfert explosion (10^{56-57} erg) that occurred in the Galactic Centre a few million years ago. The clearest indications are the x-ray/gamma-ray 10 kpc bubbles identified by the Rosat and Fermi satellites. In an earlier paper, we suggested another manifestation of this nuclear activity, i.e. elevated H-alpha emission along a section of the Magellanic Stream due to a burst (or flare) of ionizing radiation from Sgr A*. We now provide further evidence for a powerful flare event: UV absorption line ratios (in particular CIV/CII, SiIV/SiII) observed by the Hubble Space Telescope reveal that some Stream clouds towards both galactic poles are highly ionized by a source capable of producing ionization energies up to at least 50 eV. We show how these are clouds caught in a beam of bipolar, radiative ionization cones from a Seyfert nucleus associated with Sgr A*. In our model, the biconic axis is tilted by about 15 deg from the South Galactic Pole with an opening angle of roughly 60 deg. For the Stream at such large Galactic distances (D > 75 kpc), nuclear activity is a plausible explanation for all of the observed signatures: elevated H-alpha emission and H ionization fraction (X_e > 0.5), enhanced CIV/CII and SiIV/SiII ratios, and high CIV and SiIV column densities. Wind-driven shock cones are ruled out because the Fermi bubbles lose their momentum and energy to the Galactic corona long before reaching the Stream. The nuclear flare event must have had a radiative UV luminosity close to the Eddington limit (f_E ~ 0.1-1). Our time-dependent Seyfert flare models adequately explain the observations and indicate the Seyfert flare event took place T_o = 3.5 +/- 1 Myr ago. The timing estimates are consistent with the mechanical timescales needed to explain the x-ray/gamma-ray bubbles in leptonic jet/wind models (2-8 Myr).
The Large Scale Structure (LSS) in the galaxy distribution is investigated using the Sloan Digital Sky Survey Early Data Release (SDSS EDR). Using the Minimal Spanning Tree technique we have extracted sets of filaments, of wall-like structures, of galaxy groups, and of rich clusters from this unique sample. The physical properties of these structures were then measured and compared with the expectations from Zeldovich theory. The measured characteristics of galaxy walls were found to be consistent with those for a spatially flat $Lambda$CDM cosmological model with $Omega_mapprox$ 0.3 and $Omega_Lambda approx$ 0.7, and for Gaussian initial perturbations with a Harrison -- Zeldovich power spectrum. Furthermore, we found that the mass functions of groups and of unrelaxed structure elements generally fit well with the expectations from Zeldovich theory, although there was some discrepancy for lower mass groups which may be due to incompleteness in the selected sample of groups. We also note that both groups and rich clusters tend to prefer the environments of walls, which tend to be of higher density, rather than the environments of filaments, which tend to be of lower density. Finally, we note evidence of systematic differences in the properties of the LSS between the Northern Galactic Cap stripe and the Southern Galactic Cap stripe -- in particular, in the physical properties of the walls, their spatial distribution, and the relative numbers of clusters embedded in walls. Because the mean separation of walls is $approx$ 60 -- 70$h^{-1}$ Mpc, each stripe only intersects a few tens of walls. Thus, small number statistics and cosmic variance are the likely drivers of these systematic differences.
Measurements of the galaxy number density in upcoming surveys such as Euclid and the SKA will be sensitive to distortions from lensing magnification and Doppler effects, beyond the standard redshift-space distortions. The amplitude of these contributions depends sensitively on magnification bias and evolution bias in the galaxy number density. Magnification bias quantifies the change in the observed number of galaxies gained or lost by lensing magnification, while evolution bias quantifies the physical change in the galaxy number density relative to the conserved case. These biases are given by derivatives of the number density, and consequently are very sensitive to the form of the luminosity function. We give a careful derivation of the magnification and evolution biases, clarifying a number of results in the literature. We then examine the biases for a variety of surveys, encompassing optical/NIR, 21cm galaxy and 21cm intensity mapping surveys.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا