Do you want to publish a course? Click here

Transient Low-Mass X-Ray Binary Populations in Elliptical Galaxies NGC 3379 and NGC 4278

172   0   0.0 ( 0 )
 Added by Tassos Fragos
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a physically motivated and self-consistent prescription for the modeling of transient neutron star (NS) low-mass X-ray binary (LMXB) properties, such as duty cycle (DC), outburst duration and recurrence time. We apply this prescription to the population synthesis (PS) models of field LMXBs presented by Fragos et al. (2008), and compare the transient LMXB population to the Chandra X-ray survey of the two elliptical galaxies NGC 3379 and NGC 4278, which revealed several transient sources (Brassington et al., 2008, 2009). We are able to exclude models with a constant DC for all transient systems, while models with a variable DC based on the properties of each system are consistent with the observed transient populations. We predict that the majority of the observed transient sources in these two galaxies are LMXBs with red giant donors. Our comparison suggests that LMXBs formed through evolution of primordial field binaries are dominant in globular cluster (GC) poor elliptical galaxies, while they still have a significant contribution in GC rich ones.



rate research

Read More

Chandras high angular resolution can resolve emission from stellar X-ray binaries out of the diffuse X-ray emission from gaseous atmospheres within elliptical galaxies. Variations in the X-ray binary populations (per unit galaxian optical luminosity) are correlated with variations in the specific frequency of globular clusters in ellipticals. This indicates that X-ray binaries are largely formed in globular clusters, rather than being a primordial field population.
123 - A. Cardullo 2009
A large fraction of otherwise normal galaxies shows a weak nuclear activity. One of the signatures of the low-luminosity active galactic nuclei (LLAGNs) is the ultraviolet variability which was serendipitously discovered in the center of some low-ionization nuclear emission-line region (LINER) galaxies. There is a pressing need to acquire better statistics about UV flaring and variability in galaxy nuclei, both in terms of the number and monitoring of targets. The Science Data Archive of the Hubble Space Telescope was queried to find all the elliptical galaxies with UV images obtained in different epochs with the Wide Field Planetary Camera 2 (WFPC2) and possibly with nuclear spectra obtained with the Space Telescope Imaging Spectrograph (STIS) in the region of the Halpha emission line. These data were found only for the elliptical radiogalaxy NGC 4278. The UV flux of the nuclear source of NGC 4278 was measured by means of aperture photometry on the WFPC2/F218W images obtained between June 1994 and January 1995. The mass of the central supermassive black hole (SBH) was estimated by measuring the broad components of the emission lines observed in the STIS/G750M spectrum and assuming that the gas is uniformly distributed in a sphere. The nucleus of NGC 4278 hosts a barely resolved but strongly variable UV source. Its UV luminosity increased by a factor of 1.6 in a period of 6 months. The amplitude and scale time of the UV flare in NGC 4278 are remarkably similar to those of the brightest UV nuclear transients which were earlier found in other LLAGNs. The mass of the SBH was found to be in the range between 7x10^7 and 2x10^9 M_sun. This is in agreement with previous findings based on different assumptions about the gas distribution and with the predictions based on the galaxy velocity dispersion.
We use a new non-parametric Bayesian approach to obtain the most probable mass distributions and circular velocity curves along with their confidence ranges, given deprojected density and temperature profiles of the hot gas surrounding X-ray bright elliptical galaxies. For a sample of six X-ray bright ellipticals, we find that all circular velocity curves are rising in the outer parts due to a combination of a rising temperature profile and a logarithmic pressure gradient that increases in magnitude. Comparing the circular velocity curves we obtain from X-rays to those obtained from dynamical models, we find that the former are often lower in the central ~10 kpc. This is probably due to a combination of: i) Non-thermal contributions of up to ~35% in the pressure (with stronger effects in NGC 4486), ii) multiple-temperature components in the hot gas, iii) incomplete kinematic spatial coverage in the dynamical models, and iv) mass profiles that are insufficiently general in the dynamical modelling. Complementing the total mass information from the X-rays with photometry and stellar population models to infer the dark matter content, we find evidence for massive dark matter haloes with dark matter mass fractions of ~35-80% at 2Re, rising to a maximum of 80-90% at the outermost radii. We also find that the six galaxies follow a Tully-Fisher relation with slope ~4 and that their circular velocities at 1Re correlate strongly with the velocity dispersion of the local environment. As a result, the galaxy luminosity at 1Re also correlates with the velocity dispersion of the environment. These relations suggest a close link between the properties of central X-ray bright elliptical galaxies and their environments (abridged).
We present the properties of the discrete X-ray sources detected in our monitoring program of the globular cluster (GC) rich elliptical galaxy, NGC 4278, observed with Chandra ACIS-S in six separate pointings, resulting in a co-added exposure of 458-ks. From this deep observation, 236 sources have been detected within the region overlapped by all observations, 180 of which lie within the D25 ellipse of the galaxy. These 236 sources range in Lx from 3.5E36 erg/s (with 3sigma upper limit <1E37 erg/s) to ~2E40 erg/s, including the central nuclear source which has been classified as a LINER. From optical data, 39 X-ray sources have been determined to be coincident with a globular cluster, these sources tend to have high X-ray luminosity, with ten of these sources exhibiting Lx>1E38 erg/s. From X-ray source photometry, it has been determined that the majority of the 236 point sources that have well constrained colors, have values that are consistent with typical LMXB spectra, with 29 of these sources expected to be background objects from the logN-logS relation. There are 103 sources in this population that exhibit long-term variability, indicating that they are accreting compact objects. 3 of these sources have been identified as transient candidates, with a further 3 possible transients. Spectral variations have also been identified in the majority of the source population, where a diverse range of variability has been identified, indicating that there are many different source classes located within this galaxy.
270 - Miklos Peuten 2014
4U 1820-30 is a low-mass X-ray binary near the center of the globular cluster NGC 6624 consisting of, at least, one neutron star and one helium white dwarf. Analyzing 16 years of data from the Rossi X-ray Timing Explorer (RXTE) allows us to measure its orbital period and its time derivative with unprecedented accuracy to be P = 685.01197 +- 0.00003 s and dP/dt /P = -5.3 +- 0.3x10^-8 yr^-1. Hence, we confirm that the period derivative is significantly negative at the >17 sigma level, contrary to theoretical expectations for an isolated X-ray binary. We discuss possible scenarios that could explain this discrepancy, and conclude that the center of NGC 6624 most likely contains large amounts of non-luminous matter such as dark remnants. We also discuss the possibility of an IMBH inside NGC 6624, or that a dark remnant close to 4U 1820-30 causes the observed shift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا