Do you want to publish a course? Click here

Born Again Protoplanetary Disk Around Mira B

148   0   0.0 ( 0 )
 Added by Michael Ireland
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Mira AB system is a nearby (~107 pc) example of a wind accreting binary star system. In this class of system, the wind from a mass-losing red giant star (Mira A) is accreted onto a companion (Mira B), as indicated by an accretion shock signature in spectra at ultraviolet and X-ray wavelengths. Using novel imaging techniques, we report the detection of emission at mid-infrared wavelengths between 9.7 and 18.3 $mu$m from the vicinity of Mira B but with a peak at a radial position about 10 AU closer to the primary Mira A. We interpret the mid-infrared emission as the edge of an optically-thick accretion disk heated by Mira A. The discovery of this new class of accretion disk fed by M-giant mass loss implies a potential population of young planetary systems in white-dwarf binaries which has been little explored, despite being relatively common in the solar neighborhood.



rate research

Read More

127 - Olivier Chesneau 2008
In 1996, Sakurais object (V4334 Sgr) suddenly brightened in the centre of a faint Planetary Nebula (PN). This very rare event was interpreted as the reignition of a hot white dwarf that caused a rapid evolution back to the cool giant phase. From 1998 on, a copious amount of dust has formed continuously, screening out the star which has remained embedded in this expanding high optical depth envelope. The new observations, reported here, are used to study the morphology of the circumstellar dust in order to investigate the hypothesis that Sakurais Object is surrounded by a thick spherical envelope of dust. We have obtained unprecedented, high-angular resolution spectro-interferometric observations, taken with the mid-IR interferometer MIDI/VLTI, which resolve the dust envelope of Sakurais object. We report the discovery of a unexpectedly compact (30 x 40 milliarcsec, 105 x 140 AU assuming a distance of 3.5 kpc), highly inclined, dust disk. We used Monte Carlo radiative-transfer simulations of a stratified disk to constrain its geometric and physical parameters, although such a model is only a rough approximation of the rapidly evolving dust structure. Even though the fits are not fully satisfactory, some useful and robust constraints can be inferred. The disk inclination is estimated to be 75+/-3 degree with a large scale height of 47+/-7 AU. The dust mass of the disk is estimated to be 6 10^{-5} solar mass. The major axis of the disk (132+/-3 degree) is aligned with an asymmetry seen in the old PN that was re-investigated as part of this study. This implies that the mechanism responsible for shaping the dust envelope surrounding Sakurais object was already at work when the old PN formed.
We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/Submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ~ 3.4 au and presents a central cavity of ~ 1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.
Planetary nebulae are ionized clouds of gas formed by the hydrogen-rich envelopes of low- and intermediate-mass stars ejected at late evolutionary stages. The strong UV flux from their central stars causes a highly stratified ionization structure, with species of higher ionization potential closer to the star. Here we report on the exceptional case of HuBi 1, a double-shell planetary nebula whose inner shell presents emission from low-ionization species close to the star and emission from high-ionization species farther away. Spectral analysis demonstrates that the inner shell of HuBi 1 is excited by shocks, whereas its outer shell is recombining. The anomalous excitation of these shells can be traced to its low-temperature [WC10] central star whose optical brightness has declined continuously by 10 magnitudes in a period of 46 years. Evolutionary models reveal that this star is the descendent of a low-mass star ($simeq$1.1 $M_odot$) that has experienced a born-again event whose ejecta shock-excite the inner shell. HuBi 1 represents the missing link in the formation of metal-rich central stars of planetary nebulae from low-mass progenitors, offering unique insight regarding the future evolution of the born-again Sakurais object. Coming from a solar-mass progenitor, HuBi 1 represents a potential end-state for our Sun.
The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to study protoplanetary disk evolution and processes of sequential triggered star formation in the region. Out of ~400 pre-main sequence (PMS) stars selected with an earlier Chandra X-ray Observatory observation, 95% are identified with mid-infrared sources and most of these are classified as diskless or disk-bearing stars. The discovery of the additional >200 IR-excess low-mass members gives a combined Chandra+Spitzer PMS sample complete down to 0.5 Mo outside of the cloud, and somewhat above 1 Mo in the cloud. Analyses of the nearly disk-unbiased combined Chandra+Spitzer selected stellar sample give several results. Our major finding is a spatio-temporal gradient of young stars from the hot molecular core towards the primary ionizing O star HD 217086. This strongly supports the radiation driven implosion (RDI) model of triggered star formation in the region. The empirical estimate for the shock velocity of 1 km/s is very similar to theoretical models of RDI in shocked molecular clouds...ABRIDGED... Other results include: 1. agreement of the disk fractions, their mass dependency, and fractions of transition disks with other clusters; 2. confirmation of the youthfulness of the embedded CepB cluster; 3. confirmation of the effect of suppression of time-integrated X-ray emission in disk-bearing versus diskless systems.
111 - S. Kimeswenger 2008
While in the past spherodicity was assumed, and still is used in modeling of most nebulae, we know now that only a small number of planetary nebulae (PNe) are really spherical or at least nearly round. Round planetary nebulae are the minority of objects. In the case of those objects that underwent a very late helium flash (called VLTP objects or ``born-again PNe) it seems to be different. The first, hydrogen-rich PN, is more or less round. The ejecta from the VLTP event, in contrast, are extremely asymmetrical.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا