Do you want to publish a course? Click here

Protoplanetary Disk Evolution around the Triggered Star Forming Region Cepheus B

140   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Cepheus B (CepB) molecular cloud and a portion of the nearby CepOB3b OB association, one of the most active regions of star formation within 1 kpc, have been observed with the IRAC detector on board the Spitzer Space Telescope. The goals are to study protoplanetary disk evolution and processes of sequential triggered star formation in the region. Out of ~400 pre-main sequence (PMS) stars selected with an earlier Chandra X-ray Observatory observation, 95% are identified with mid-infrared sources and most of these are classified as diskless or disk-bearing stars. The discovery of the additional >200 IR-excess low-mass members gives a combined Chandra+Spitzer PMS sample complete down to 0.5 Mo outside of the cloud, and somewhat above 1 Mo in the cloud. Analyses of the nearly disk-unbiased combined Chandra+Spitzer selected stellar sample give several results. Our major finding is a spatio-temporal gradient of young stars from the hot molecular core towards the primary ionizing O star HD 217086. This strongly supports the radiation driven implosion (RDI) model of triggered star formation in the region. The empirical estimate for the shock velocity of 1 km/s is very similar to theoretical models of RDI in shocked molecular clouds...ABRIDGED... Other results include: 1. agreement of the disk fractions, their mass dependency, and fractions of transition disks with other clusters; 2. confirmation of the youthfulness of the embedded CepB cluster; 3. confirmation of the effect of suppression of time-integrated X-ray emission in disk-bearing versus diskless systems.



rate research

Read More

We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/Submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ~ 3.4 au and presents a central cavity of ~ 1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.
Context. Characterizing the evolution of protoplanetary disks is necessary to improve our understanding of planet formation. Constraints on both dust and gas are needed to determine the dominant disk dissipation mechanisms. Aims. We aim to compare the disk dust masses in the Chamaeleon II (Cha II) star-forming region with other regions with ages between 1 and 10Myr. Methods. We use ALMA band 6 observations (1.3 mm) to survey 29 protoplanetary disks in Cha II. Dust mass estimates are derived from the continuum data. Results. Out of our initial sample of 29 disks, we detect 22 sources in the continuum, 10 in 12CO, 3 in 13CO, and none in C18O (J=2-1). Additionally, we detect two companion candidates in the continuum and 12CO emission. Most disk dust masses are lower than 10Mearth, assuming thermal emission from optically thin dust. We compare consistent estimations of the distributions of the disk dust mass and the disk-to-stellar mass ratios in Cha II with six other low mass and isolated star-forming regions in the age range of 1-10Myr: Upper Sco, CrA, IC 348, Cha I, Lupus, and Taurus. When comparing the dust-to-stellar mass ratio, we find that the masses of disks in Cha II are statistically different from those in Upper Sco and Taurus, and we confirm that disks in Upper Sco, the oldest region of the sample, are statistically less massive than in all other regions. Performing a second statistical test of the dust mass distributions from similar mass bins, we find no statistical differences between these regions and Cha II. Conclusions. We interpret these trends, most simply, as a sign of decline in the disk dust masses with time or dust evolution. Different global initial conditions in star-forming regions may also play a role, but their impact on the properties of a disk population is difficult to isolate in star-forming regions lacking nearby massive stars.
294 - G. Aresu , I. Kamp , R. Meijerink 2014
The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..
347 - Piyali Saha 2021
The presence of three more Herbig Ae/Be (HAeBe) stars in the Cepheus Flare within a 1.5$^{circ}$ radius centered on HD 200775 suggests that star formation is prevalent in a wider region of the LDN 1147/1158, LDN 1172/1174, and LDN 1177 clouds. A number of young stellar objects (YSOs) are also found to be located toward these clouds. Various star formation studies indicate ongoing low-mass star formation inside this region. Sources associated with less near-infrared (IR) excess and less H-alpha emission raise the possibility that more low-mass YSOs, which were not identified in previous studies, are present in this region. The aim is to conduct a search for additional young sources that are kinematically associated with the known YSOs and to characterize their properties. Based on the Gaia DR2 distances and proper motions, we found that BD+68 1118, HD 200775, and PV Cep are spatially and kinematically associated with known YSOs. Using the Gaia DR2 data, we identified 39 co-moving sources around BD+68 1118. These sources are characterized using optical and near-IR color-color and color-magnitude diagrams. We estimated a distance of 340+/-7 pc to the whole association that contains BD+68 1118, HD 200775, and PV Cep. Based on the distance and proper motions of all the known YSOs, a total of 74 additional co-moving sources are found, of which 39 form a loose association surrounding BD+68 1118. These sources are predominantly M-type with ages of $sim$10 Myr and no or very little near-IR excess emission. The positive expansion coefficients obtained via the projected internal motions of the sources surrounding BD+68 1118 and HD 200775 show that these sources are expanding with respect to their HAeBe stars. A spatio-temporal gradient of these sources toward the center of the Cepheus Flare Shell supports the concept of star formation triggered by external impacts.
The massive star-forming region W75N~(B) is thought to host a cluster of massive protostars (VLA~1, VLA~2, and VLA~3) undergoing different evolutionary stages. In this work, we present radio continuum data with the highest sensitivity and angular resolution obtained to date in this region, using the VLA-A and covering a wide range of frequencies (4-48~GHz), which allowed us to study the morphology and the nature of the emission of the different radio continuum sources. We also performed complementary studies with multi-epoch VLA data and ALMA archive data at 1.3 mm wavelength. We find that VLA~1 is driving a thermal radio jet at scales of $approx$0.1 arcsec ($approx$130 au), but also shows signs of an incipient hyper-compact HII region at scales of $lesssim$ 1 arcsec ($lesssim$ 1300~au). VLA~3 is also driving a thermal radio jet at scales of a few tenths of arcsec (few hundred of au). We conclude that this jet is shock-exciting the radio continuum sources Bc and VLA~4 (obscured HH objects), which show proper motions moving outward from VLA~3 at velocities of $approx$112--118~km/s. We have also detected three new weak radio continuum sources, two of them associated with millimeter continuum cores observed with ALMA, suggesting that these two sources are also embedded YSOs in this massive star-forming region.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا