Do you want to publish a course? Click here

Statistical Properties of the GALEX/SDSS matched source catalogs, and classification of the UV sources

118   0   0.0 ( 0 )
 Added by David Thilker
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Galaxy Evolution Explorer (GALEX) Medium and All-Sky-Imaging Survey (MIS & AIS) data from the first public data release (GR1), matched to the Sloan Digital Sky Survey (SDSS) DR3 catalog, to perform source classification. The GALEX surveys provide photometry in far- and near-UV bands and the SDSS in five optical bands (u,g,r,i,z). The GR1/DR3 overlapping areas are 363[83]deg^2 for the GALEX AIS[MIS], for sources within the 0.5deg central area of the GALEX fields. Our sample covers mostly |b|>30deg galactic latitudes. We present statistical properties of the GALEX/SDSS matched sources catalog, containing >2x10^6 objects detected in at least one UV band. We classify the matched sources by comparing the seven-band photometry to model colors constructed for different classes of astrophysical objects. For sources with photometric errors <0.3 mag, the corresponding typical AB-magnitude limits are m_FUV~21.5, m_NUV~22.5 for AIS, and m_FUV~24, m_NUV~24.5 for MIS. At AIS depth, the number of Galactic and extragalactic objects are comparable, but the latter predominate in the MIS. Based on our stellar models, we estimate the GALEX surveys detect hot White Dwarfs throughout the Milky Way halo (down to a radius of 0.04 R_sun at MIS depth), providing an unprecedented improvement in the Galactic WD census. Their observed surface density is consistent with Milky Way model predictions. We also select low-redshift QSO candidates, extending the known QSO samples to lower magnitudes, and providing candidates for detailed z~1 follow-up investigations. SDSS optical spectra available for a large subsample confirm the classification for the photometrically selected candidates with 97% purity for single hot stars, ~45%(AIS)/31%(MIS) for binaries containing a hot star and a cooler companion, and about 85% for QSOs.



rate research

Read More

We present a detailed study of the Galaxy Evolution Explorers photometric catalogs with special focus on the statistical properties of the All-sky and Medium Imaging Surveys. We introduce the concept of primaries to resolve the issue of multiple detections and follow a geometric approach to define clean catalogs with well-understood selection functions. We cross-identify the GALEX sources (GR2+3) with Sloan Digital Sky Survey (DR6) observations, which indirectly provides an invaluable insight about the astrometric model of the UV sources and allows us to revise the band merging strategy. We derive the formal description of the GALEX footprints as well as their intersections with the SDSS coverage along with analytic calculations of their areal coverage. The crossmatch catalogs are made available for the public. We conclude by illustrating the implementation of typical selection criteria in SQL for catalog subsets geared toward statistical analyses, e.g., correlation and luminosity function studies.
123 - Marcel A. Agueros 2005
We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represent ~2.5% of all SDSS sources within these fields and about half are optically unresolved. Most unresolved GALEX/SDSS sources are bright blue turn-off thick disk stars and are typically detected only in the GALEX near-UV band. The remaining unresolved sources include low-redshift quasars, white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically unresolved sources detected in both GALEX bands. Almost all the resolved SDSS sources detected by GALEX are fainter than the SDSS main spectroscopic limit. These sources have colors consistent with those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX bands. Measurements of their UV colors allow much more accurate and robust estimates of star-formation history than are possible using only SDSS data. Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly selected from the GALEX data by requiring that they be brighter in the far-UV than in the near-UV band. However, older starburst galaxies have UV colors similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX fluxes alone. With the aid of 2MASS data, we construct and discuss median 10 band UV-optical-IR spectral energy distributions for turn-off stars, hot white dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out the high degree of correlation between the UV color and the contribution of the UV flux to the UV-optical-IR flux of galaxies detected by GALEX.
The ALPINE-ALMA large program targets the [CII] 158 $mu$m line and the far-infrared continuum in 118 spectroscopically confirmed star-forming galaxies between z=4.4 and z=5.9. It represents the first large [CII] statistical sample built in this redshift range. We present details of the data processing and the construction of the catalogs. We detected 23 of our targets in the continuum. To derive accurate infrared luminosities and obscured star formation rates, we measured the conversion factor from the ALMA 158 $mu$m rest-frame dust continuum luminosity to the total infrared luminosity (L$_{rm IR}$) after constraining the dust spectral energy distribution by stacking a photometric sample similar to ALPINE in ancillary single-dish far-infrared data. We found that our continuum detections have a median L$_{rm IR}$ of 4.4$times 10^{11}$ L$_odot$. We also detected 57 additional continuum sources in our ALMA pointings. They are at lower redshift than the ALPINE targets, with a mean photometric redshift of 2.5$pm$0.2. We measured the 850 $mu$m number counts between 0.35 and 3.5 mJy, improving the current interferometric constraints in this flux density range. We found a slope break in the number counts around 3 mJy with a shallower slope below this value. More than 40 % of the cosmic infrared background is emitted by sources brighter than 0.35 mJy. Finally, we detected the [CII] line in 75 of our targets. Their median [CII] luminosity is 4.8$times$10$^8$ L$_odot$ and their median full width at half maximum is 252 km/s. After measuring the mean obscured SFR in various [CII] luminosity bins by stacking ALPINE continuum data, we find a good agreement between our data and the local and predicted SFR-L$_{rm [CII]}$ relations of De Looze et al. (2014) and Lagache et al. (2018).
199 - Dale Mudd , K.Z. Stanek 2014
The hottest stars ($>$10,000 K), and by extension typically the most massive ones, are those that will be prevalent in the ultraviolet (UV) portion of the electromagnetic spectrum, and we expect numerous B, O, and Wolf-Rayet stars to be bright in UV data. In this paper, we update the previous UV catalog of M33, created using the Ultraviolet Imaging Telescope (UIT), using data from the Galaxy Evolution Explorer (GALEX). We utilize PSF photometry to better handle the crowded regions in the galaxy, and benefit from GALEXs increased sensitivity compared to UIT. We match our detections with data from the Local Group Galaxies Survey (LGGS) to create a catalog with photometry spanning from the far-UV through the optical for a final list of 24738 sources. All of these sources have far-UV (FUV; 1516A), near-UV (NUV; 2267A), and V data, and a significant fraction also have U, B, R, and I data as well. We compare these sources to a catalog of known Wolf-Rayet stars in M33 and find that we recover 114 of 206 stars with spatially-coincident UV objects. Additionally, we highlight and investigate those sources with unique colors as well as a selection of other well-studied sources in M33.
We use the GALEX (Galaxy Evolution Explorer) Medium Imaging Survey (MIS) and All-Sky Imaging Survey (AIS) data available in the first internal release, matched to the SDSS catalogs in the overlapping regions, to classify objects by comparing the multi-band photometry to model colors. We show an example of the advantage of such broad wavelength coverage (GALEX far-UV and near-UV, SDSS ugriz) in classifying objects and augmenting the existing samples and catalogs. From the MIS [AIS] sample over an area of 75 [92] square degrees, we select a total of 1736 [222] QSO candidates at redshift less than 2, significantly extending the number of fainter candidates, and moderately increasing the number of bright objects in the SDSS list of spectroscopically confirmed QSO. Numerous hot stellar objects are also revealed by the UV colors, as expected.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا