Do you want to publish a course? Click here

GALEX Catalog of UV Point Sources in M33

188   0   0.0 ( 0 )
 Added by Dale Mudd
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The hottest stars ($>$10,000 K), and by extension typically the most massive ones, are those that will be prevalent in the ultraviolet (UV) portion of the electromagnetic spectrum, and we expect numerous B, O, and Wolf-Rayet stars to be bright in UV data. In this paper, we update the previous UV catalog of M33, created using the Ultraviolet Imaging Telescope (UIT), using data from the Galaxy Evolution Explorer (GALEX). We utilize PSF photometry to better handle the crowded regions in the galaxy, and benefit from GALEXs increased sensitivity compared to UIT. We match our detections with data from the Local Group Galaxies Survey (LGGS) to create a catalog with photometry spanning from the far-UV through the optical for a final list of 24738 sources. All of these sources have far-UV (FUV; 1516A), near-UV (NUV; 2267A), and V data, and a significant fraction also have U, B, R, and I data as well. We compare these sources to a catalog of known Wolf-Rayet stars in M33 and find that we recover 114 of 206 stars with spatially-coincident UV objects. Additionally, we highlight and investigate those sources with unique colors as well as a selection of other well-studied sources in M33.



rate research

Read More

In observations of diffuse emissions like, e.g., the Lyman-$alpha$ heliospheric glow, contributions to the observed signal from point sources (e.g., stars) are considered as a contamination. There are relatively few brightest point sources that are usually properly resolved and can be subtracted or masked. We present results of analysis of the distribution of point sources using UV sky-survey maps from the SOHO/SWAN instrument and spectrophotometry data from the IUE satellite. The estimated distribution suggests that the number of these sources increases with decreasing intensity. Below a certain threshold, these sources cannot be resolved against the diffuse signal from the backscatter glow, that results in a certain physical background from unresolved point sources. Detection, understanding and subtraction of the point-source background has implications for proper characterization of diffuse emissions and accurate comparison with models. Stars are also often used as standard candles for in-flight calibration of satellite UV observations, thus proper understanding of signal contributions from the point sources is important for the calibration process. We present a general approach to quantify the background radiation level from unresolved point sources in UV sky-survey maps. In the proposed method, a distribution of point sources as a function of their intensity is properly integrated to compute the background signal level. These general considerations are applied to estimate the unresolved-point-sources background in the SOHO/SWAN observations that on average amounts to $28.9$ R. We discuss also the background radiation anisotropies and general questions related to modeling the point-source contributions to diffuse UV-emission observations.
The catalog from the first high resolution U-band image of the Hubble Ultra Deep Field, taken with Hubbles Wide Field Planetary Camera 2 through the F300W filter, is presented. We detect 96 U-band objects and compare and combine this catalog with a Great Observatories Origins Deep Survey (GOODS) B-selected catalog that provides B, V, i, and z photometry, spectral types, and photometric redshifts. We have also obtained Far-Ultraviolet (FUV, 1614 AA) data with Hubbles Advanced Camera for Surveys Solar Blind Channel (ACS/SBC) and with Galaxy Evolution Explorer (GALEX). We detected 31 sources with ACS/SBC, 28 with GALEX/FUV, and 45 with GALEX/NUV. The methods of observations, image processing, object identification, catalog preparation, and catalog matching are presented.
157 - Beverly J. Smith 2010
We have used the GALEX ultraviolet telescope to study stellar populations and star formation morphology in a well-defined sample of 42 nearby optically-selected pre-merger interacting galaxy pairs. Galaxy interactions were likely far more common in the early Universe than in the present, thus our study provides a nearby well-resolved comparison sample for high redshift studies. We have combined the GALEX NUV and FUV images with broadband optical maps from the Sloan Digitized Sky Survey to investigate the ages and extinctions of the tidal features and the disks. The distributions of the UV/optical colors of the tidal features and the main disks of the galaxies are similar, however, the tidal features are bluer on average in NUV - g when compared with their own parent disks, thus tails and bridges are often more prominent relative to the disks in UV images compared to optical maps. This effect is likely due to enhanced star formation in the tidal features compared to the disks rather than reduced extinction, however, lower metallicities may also play a role. We have identified a few new candidate tidal dwarf galaxies in this sample. Other interesting morphologies such as accretion tails and `beads on a string are also seen in these images. We also identify a possible `Taffy galaxy in our sample, which may have been produced by a head-on collision between two galaxies. In only a few cases are strong tidal features seen in HI maps but not in GALEX.
We present a catalog of emissive point sources detected in the SPT-SZ survey, a contiguous 2530-square-degree area surveyed with the South Pole Telescope (SPT) from 2008 - 2011 in three bands centered at 95, 150, and 220 GHz. The catalog contains 4845 sources measured at a significance of 4.5 sigma or greater in at least one band, corresponding to detections above approximately 9.8, 5.8, and 20.4 mJy in 95, 150, and 220 GHz, respectively. Spectral behavior in the SPT bands is used for source classification into two populations based on the underlying physical mechanisms of compact, emissive sources that are bright at millimeter wavelengths: synchrotron radiation from active galactic nuclei and thermal emission from dust. The latter population includes a component of high-redshift sources often referred to as submillimeter galaxies (SMGs). In the relatively bright flux ranges probed by the survey, these sources are expected to be magnified by strong gravitational lensing. The survey also contains sources consistent with protoclusters, groups of dusty galaxies at high redshift undergoing collapse. We cross-match the SPT-SZ catalog with external catalogs at radio, infrared, and X-ray wavelengths and identify available redshift information. The catalog splits into 3980 synchrotron-dominated and 865 dust-dominated sources and we determine a list of 506 SMGs. Ten sources in the catalog are identified as stars. We calculate number counts for the full catalog, and synchrotron and dusty components, using a bootstrap method and compare our measured counts with models. This paper represents the third and final catalog of point sources in the SPT-SZ survey.
303 - Mingxu Sun , B. W. Jiang , He Zhao 2018
Interstellar extinction in ultraviolet is the most severe in comparison with optical and infrared wavebands and a precise determination plays an important role in correctly recovering the ultraviolet brightness and colors of objects. By finding the observed bluest colors at given effective temperature and metallicity range of dwarf stars, stellar intrinsic colors, $C^0_{rm B,V}$, $C^0_{rm NUV,B}$, $C^0_{rm FUV,B}$ and $C^0_{rm FUV,NUV}$, are derived according to the stellar parameters from the LAMOST spectroscopic survey and photometric results from the $GALEX$ and APASS surveys. With the derived intrinsic colors, the ultraviolet color excesses are calculated for about 25,000 A- and F-type dwarf stars. Analysis of the color excess ratios yields the extinction law related to the $GALEX$ UV bands: $E_{{rm NUV,B}}$/$E_{{rm B,V}} = 3.77$, $E_{{rm FUV,B}}$/$E_{{rm B,V}} = 3.39$, $E_{{rm FUV,NUV}}$/$E_{{rm B,V}} = -0.38$. The results agree very well with previous works in the $NUV$ band and in general with the extinction curve derived by Fitzpatrick (1999) for $R_{rm V}=3.35$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا