Do you want to publish a course? Click here

HST/NICMOS Observations of NGC 1333: The Ratio of Stars to Sub-Stellar Objects

84   0   0.0 ( 0 )
 Added by Julia Greissl
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analysis of NICMOS photometry and low-resolution grism spectroscopy of low-mass stars and sub-stellar objects in the young star-forming region NGC 1333. Our goal is to constrain the ratio of low-mass stars to sub- stellar objects down to 20 Mjup in the cluster as well as constrain the cluster IMF down to 30 Mjup in combination with a previous survey of NGC 1333 by Wilking et al. Our survey covers 4 fields of 51.2 x 51.2, centered on brown dwarf candidates previously identified in Wilking et al. We extend previous work based on the use of a water vapor index for spectral typing to wavelengths accessible with NICMOS on the HST. Spectral types were derived for the 14 brightest objects in our fields, ranging from <M0 - M8, which at the age of the cluster (0.3 Myr) corresponds to a range in mass of >0.25 - 0.02 Msun. In addition to the spectra, we present an analysis of the color-magnitude diagram using pre-main sequence evolutionary models of DAntona & Mazzitelli. Using an extinction-limited sample, we derive the ratio of low-mass stars to brown dwarfs. Comparisons of the observed ratio to that expected from the field IMF of Chabrier indicate that the two results are consistent. We combine our data with that of Wilking et al. to compute the ratio of intermediate-mass stars (0.1 - 1.0 Msun) to low-mass objects (0.03 - 0.1 Msun) in the cluster. We also report the discovery of a faint companion to the previously confirmed brown dwarf ASR 28, as well as a possible outflow surrounding ASR 16. If the faint companion is confirmed as a cluster member, it would have a mass of ~ 5 Mjup (mass ratio 0.15) at a projected distance of 350 AU, similar to 2MASS 1207-3923 B.



rate research

Read More

We present HST/NICMOS photometry, and low-resolution K-band spectra of the GLIMPSE9 stellar cluster. The newly obtained color-magnitude diagram shows a cluster sequence with H-Ks =1 mag, indicating an interstellar extinction Aks=1.6pm0.2 mag. The spectra of the three brightest stars show deep CO band-heads, which indicate red supergiants with spectral type M1-M2. Two 09-B2 supergiants are also identified, which yield a spectrophotometric distance of 4.2pm0.4 kpc. Presuming that the population is coeval, we derive an age between 15 and 27 Myr, and a total cluster mass of 1600pm400 Msun, integrated down to 1 Msun. In the vicinity of GLIMPSE9 are several HII regions and SNRs, all of which (including GLIMPSE 9) are probably associated with a giant molecular cloud (GMC) in the inner galaxy. GLIMPSE9 probably represents one episode of massive star formation in this GMC. We have identified several other candidate stellar clusters of the same complex.
We have analyzed HST/NICMOS2 F110W, F160W, F165M, and F207M band images covering the central 1x1 of the cluster associated with Mon R2 in order to constrain the Initial Mass Function (IMF) down to 20 Mjup. The flux ratio between the F165M and F160W bands was used to measure the strength of the water band absorption feature and select a sample of 12 out of the total sample of 181 objects that have effective temperatures between 2700 K and 3300 K. These objects are placed in the HR diagram together with sources observed by Carpenter et al. (1997) to estimate an age of ~1 Myr for the low mass cluster population. By constructing extinction limited samples, we are able to constrain the IMF and the fraction of stars with a circumstellar disk in a sample that is 90% complete for both high and low mass objects. For stars with estimated masses between 0.1 Msun and 1.0 Msun for a 1 Myr population with Av < 19 mag, we find that 27+-9% have a near-infrared excess indicative of a circumstellar disk. The derived fraction is similar to, or slightly lower than, the fraction found in other star forming regions of comparable age. We constrain the number of stars in the mass interval 0.08-1.0Msun to the number of objects in the mass interval 0.02-0.08 Msun by forming the ratio, R**=N(0.08-1Msun)/N(0.02-0.08Msun) for objects in an extinction limited sample complete for Av < 7 mag. The ratio is found to be R^**=2.2+-1.3 assuming an age of 1 Myr, consistent with the similar ratio predicted by the system IMF proposed by Chabrier (2003). The ratio is similar to the ratios observed towards the Orion Nebula Cluster and IC 348 as well as the ratio derived in the 28 square degree survey of Taurus by Guieu et al. (2006).
121 - C. E. Max 2004
We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern sub-nucleus is more highly reddened. Based upon the nuclear separation measured at 5 GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K band, and is located slightly to the north of the brightest point in K band. Within the South nucleus there is strong H2 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H2 emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.
We present the results of near-infrared imaging and low-resolution near- infrared spectroscopy of low mass objects in the NGC 1333 molecular cloud. A JHK survey of an 11.4 x 11.7 area of the northern cluster was conducted to a sensitivity of K < 16 mag. Using near-infrared magnitudes and colors from this and previously published surveys, twenty-five brown dwarf candidates were selected toward the high extinction cloud core. Spectra in the K band were obtained and comparisons of the depths of water vapor absorption bands in our candidate objects with a grid of dwarf,subgiant, and giant standards were made to derive spectral types. These data were then used to derive effective temperatures and stellar luminosities which, when combined with theoretical tracks and isochrones for pre-main sequence objects, resulted in estimates for their masses and ages. The models suggest a median age for the sample of < 1 Myr with substellar masses for at least 9 of the candidates including the x-ray flare source ASR 24. Surface gravities have been estimated for the brown dwarf candidates and, for a given spectral type,found to resemble more closely dwarfs than giants. Using the near-infrared imaging data and age estimates from the spectroscopic sample, an extinction-limited sample in the northern cluster was defined. Consistent with recent studies of other young clusters, this sample exhibits an accretion disk frequency of 0.75 +-0.20 and a mass spectrum slope across the hydrogen-burning limit of alpha < 1.6 where dN/dM ~ M^-(alpha).
We present spectral observations of 130 young stellar objects (YSOs) in the Serpens Cloud Core and NGC 1333 embedded clusters. The observations consist of near-IR spectra in the H and K-bands, from SpeX on the IRTF and far-red spectra (6000 - 9000 A) from Hectospec on the MMT. These YSOs were identified in previous Spitzer and Chandra observations, and the evolutionary classes of the YSOs were determined from the Spitzer mid-IR photometry. With these spectra, we search for corroborating evidence for the pre-main sequence nature of the objects, study the properties of the detected emission lines as a function of evolutionary class, and obtain spectral types for the observed YSOs. By comparing the positions of the YSOs in the HR diagrams with the pre-main sequence tracks of Baraffe (1998), we determine ages of the embedded sources and study the relative ages of the YSOs with and without optically thick circumstellar disks. The apparent isochronal ages of the YSOs in both clusters range from less than 1 Myr to 10 Myr, with most objects below 3 Myr. The observed distribution of ages for the Class II and Class III objects are statistically indistinguishable. We examine the spatial distribution and extinction of the YSOs as a function of their isochronal ages. We find the sources < 3 Myr to be concentrated in the molecular cloud gas while the older sources are spatially dispersed and are not deeply embedded. Nonetheless, the sources with isochronal ages > 3 Myr show all the characteristics of young stellar objects in their spectra, their IR spectral energy distributions, and their X-ray emission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا