No Arabic abstract
We present results of near infrared imaging of the disk-galaxy-merger NGC 6240 using adaptive optics on the Keck II Telescope and reprocessed archival data from NICMOS on the Hubble Space Telescope. Both the North and South nuclei of NGC 6240 are clearly elongated, with considerable sub-structure within each nucleus. In K band there are at least two point-sources within the North nucleus; we tentatively identify the south-western point-source within the North nucleus as the position of one of the two AGNs. Within the South nucleus, the northern sub-nucleus is more highly reddened. Based upon the nuclear separation measured at 5 GHz, we suggest that the AGN in the South nucleus is still enshrouded in dust at K band, and is located slightly to the north of the brightest point in K band. Within the South nucleus there is strong H2 1-0 S(1) line emission from the northern sub-nucleus, contrary to the conclusions of previous seeing-limited observations. Narrowband H2 emission-line images show that a streamer or ribbon of excited molecular hydrogen connects the North and South nuclei. We suggest that this linear feature corresponds to a bridge of gas connecting the two nuclei, as seen in computer simulations of mergers. Many point-like regions are seen around the two nuclei. These are most prominent at 1.1 microns with NICMOS, and in K-band with Keck adaptive optics. We suggest that these point-sources represent young star clusters formed in the course of the merger.
WFPC2 images and STIS spectroscopic observations are presented of the double nucleus in the merger system NGC 6240. We find that: (a) the kinematics of the ionized gas is similar to that of the molecular gas, despite a different morphology; (b) the gaseous and stellar kinematics are quite different, suggesting an early merger stage; (c) neither the gaseous nor the stellar kinematics show an obvious sign of the supermassive black hole believed to be responsible for the X-ray emission of NGC 6240; and (d) the steep off-nuclear velocity gradient is not due to a 10E11 solar mass black hole, in contrast to earlier suggestions.
Adaptive optics (AO) on 8-10 m telescopes is an enormously powerful tool for studying young nearby stars. It is especially useful for searching for companions. Using AO on the 10-m W.M. Keck II telescope we have measured the position of the brown dwarf companion to TWA5 and resolved the primary into an 0.055 arcsecond double. Over the next several years follow-up astrometry should permit an accurate determination of the masses of these young stars. We have also re-observed the candidate extrasolar planet TWA6B, but measurements of its motion relative to TWA6A are inconclusive. We are carrying out a search for new planetary or brown dwarf companions to TWA stars and, if current giant planet models are correct, are currently capable of detecting a 1 Jupiter-mass companion at ~1 arcsecond and a 5 Jupiter-mass companion at ~0.5 arcsecon around a typical TWA member.
We have obtained adaptive optics, high spatial resolution (0.15 arcsecond) K-band spectra and images of the region around the two active nuclei in NGC 6240 which show the presence of circumnuclear shocks. The data are consistent with the thermal excitation mechanism being the dominant one in the nuclear region. UV fluorescence and associative detachment may also contribute to the fraction of the energy emitted through molecular hydrogen transitions. The near-IR continuum emission appears closely associated with the two active nuclei. The morphological similarities between the near-IR images and the Chandra X-ray images indicate the same mechanisms may be responsible for the emission in near-IR and X-ray band.
We present an analysis of NICMOS photometry and low-resolution grism spectroscopy of low-mass stars and sub-stellar objects in the young star-forming region NGC 1333. Our goal is to constrain the ratio of low-mass stars to sub- stellar objects down to 20 Mjup in the cluster as well as constrain the cluster IMF down to 30 Mjup in combination with a previous survey of NGC 1333 by Wilking et al. Our survey covers 4 fields of 51.2 x 51.2, centered on brown dwarf candidates previously identified in Wilking et al. We extend previous work based on the use of a water vapor index for spectral typing to wavelengths accessible with NICMOS on the HST. Spectral types were derived for the 14 brightest objects in our fields, ranging from <M0 - M8, which at the age of the cluster (0.3 Myr) corresponds to a range in mass of >0.25 - 0.02 Msun. In addition to the spectra, we present an analysis of the color-magnitude diagram using pre-main sequence evolutionary models of DAntona & Mazzitelli. Using an extinction-limited sample, we derive the ratio of low-mass stars to brown dwarfs. Comparisons of the observed ratio to that expected from the field IMF of Chabrier indicate that the two results are consistent. We combine our data with that of Wilking et al. to compute the ratio of intermediate-mass stars (0.1 - 1.0 Msun) to low-mass objects (0.03 - 0.1 Msun) in the cluster. We also report the discovery of a faint companion to the previously confirmed brown dwarf ASR 28, as well as a possible outflow surrounding ASR 16. If the faint companion is confirmed as a cluster member, it would have a mass of ~ 5 Mjup (mass ratio 0.15) at a projected distance of 350 AU, similar to 2MASS 1207-3923 B.