No Arabic abstract
We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. Our sample consists of 31 HII galaxies, characterized by strong Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm observations were obtained. The radio spectral energy distribution has a range of behaviours; 1) there are galaxies where the SED is characterized by a synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with possible free-free absorption at long wavelengths. The latter SEDs were found in a few galaxies and represent a signature of heavily embedded massive star clusters closely related to the early stages of massive star formation. Based on the comparison of the star formation rates determined from the recombination lines and those determined from the radio emission we find that SFR(Ha) is on average five times higher than SFR(1.4GHz). We confirm this tendency by comparing the ratio between the observed flux at 20 cm and the expected one, calculated based on the Ha star formation rates, both for the galaxies in our sample and for normal ones. This analysis shows that this ratio is a factor of 2 smaller in our galaxies than in normal ones, indicating that they fall below the FIR/radio correlation. These results suggest that the emission of these galaxies is dominated by a recent and massive star formation event in which the first supernovae (SN) just started to explode. We conclude that the systematic lack of synchrotron emission in those systems with the largest equivalent width of Hb can only be explained if those are young starbursts of less than 3.5Myr of age.
Radio observations at metre-centimetre wavelengths shed light on the nature of the emission of HII regions. Usually this category of objects is dominated by thermal radiation produced by ionised hydrogen, namely protons and electrons. However, a number of observational studies have revealed the existence of HII regions with a mixture of thermal and non-thermal radiation. The latter represents a clue as to the presence of relativistic electrons. However, neither the interstellar cosmic-ray electron flux nor the flux of secondary electrons, produced by primary cosmic rays through ionisation processes, is high enough to explain the observed flux densities. We investigate the possibility of accelerating local thermal electrons up to relativistic energies in HII region shocks. We assumed that relativistic electrons can be accelerated through the first-order Fermi acceleration mechanism and we estimated the emerging electron fluxes, the corresponding flux densities, and the spectral indexes. We find flux densities of the same order of magnitude of those observed. In particular, we applied our model to the deep south (DS) region of Sagittarius B2 and we succeeded in reproducing the observed flux densities with an accuracy of less than 20% as well as the spectral indexes. The model also gives constraints on magnetic field strength ($0.3-4$ mG), density ($1-9times10^4$ cm$^{-3}$), and flow velocity in the shock reference frame ($33-50$ km s$^{-1}$) expected in DS. We suggest a mechanism able to accelerate thermal electrons inside HII regions through the first-order Fermi acceleration. The existence of a local source of relativistic electrons can explain the origin of both the observed non-thermal emission and the corresponding spectral indexes.
Context. The youngest Galactic supernova remnant G1.9+0.3 is an interesting target for next generation gamma-ray observatories. So far, the remnant is only detected in the radio and the X-ray bands, but its young age of ~100 yrs and inferred shock speed of ~14,000 km/s could make it an efficient particle accelerator. Aims. We aim to model the observed radio and X-ray spectra together with the morphology of the remnant. At the same time, we aim to estimate the gamma-ray flux from the source and evaluated the prospects of its detection with future gamma-ray experiments. Methods. We performed spherical symmetric 1-D simulations with the RATPaC code, in which we simultaneously solve the transport equation for cosmic rays, the transport equation for magnetic turbulence, and the hydro-dynamical equations for the gas flow. Separately computed distributions of the particles accelerated at the forward and the reverse shock are then used to calculate the spectra of synchrotron, inverse Compton, and pion-decay radiation from the source. Results. The emission from G1.9+0.3 can be self-consistently explained within the test-particle limit. We find that the X-ray flux is dominated by emission from the forward shock while most of the radio emission originates near the reverse shock, which makes G1.9+0.3 the first remnant with non-thermal radiation detected from the reverse shock. The flux of very-high-energy gamma-ray emission from G1.9+0.3 is expected to be close to the sensitivity threshold of the Cherenkov Telescope Array, CTA. The limited time available to grow large-scale turbulence limits the maximum energy of particles to values below 100 TeV, hence G1.9+0.3 is not a PeVatron.
Recently the bound on the Lyapunov exponent $lambda_L le 2pi T/ hbar$ in thermal quantum systems was conjectured by Maldacena, Shenker, and Stanford. If we naively apply this bound to a system with a fixed Lyapunov exponent $lambda_L$, it might predict the existence of the lower bound on temperature $T ge hbar lambda_L/ 2pi $. Particularly, it might mean that chaotic systems cannot be zero temperature quantum mechanically. Even classical dynamical systems, which are deterministic, might exhibit thermal behaviors once we turn on quantum corrections. We elaborate this possibility by investigating semi-classical particle motions near the hyperbolic fixed point and show that indeed quantum corrections may induce energy emission which obeys a Boltzmann distribution. We also argue that this emission is related to acoustic Hawking radiation in quantum fluid. Besides, we discuss when the bound is saturated and show that a particle motion in an inverse harmonic potential and $c=1$ matrix model may saturate the bound although they are integrable.
We constructed diagnostic diagrams using emission line ratios and equivalent widths observed in several samples of HII galaxies. The diagrams are compared to predictions from new photoionization models for evolving starbursts. We find that HII galaxies from objective-prism surveys are not reproduced by models of instantaneous starbursts surrounded by constant density, ionization bounded HII regions. The observed relations between emission line ratios and Hb equivalent width (W(Hb)) can be understood if older stellar populations are not negligible in HII galaxies. Also, different dust obscuration for stars and gas and leakage of Lyman continuum photons from the observed HII regions can be important. As a result, HII galaxies selected from objective-prism surveys are unlikely to contain many objects in which the most recent starburst is older than about 5~Myr. The observed increase of [OI]/Hb with decreasing W(Hb) can result from the dynamical effects of winds and supernovae. This interpretation provides also a natural explanation of the small range of ionization parameters in giant HII regions. The [OIII]/Hb vs [OII]/Hb diagnostic diagram cannot be fully understood in terms of pure photoionization models and indicate the need for additional heating sources. The [NII]/[OII] ratio is shown to increase as W(Hb) decreases. A possible explanation is an N/O increase due to gradual enrichment by winds from Wolf-Rayet stars on a time scale of 5 Myr. (abridged abstract)
We present evidence for anomalous microwave emission in the RCW175 hii region. Motivated by 33 GHz $13arcmin$ resolution data from the Very Small Array (VSA), we observed RCW175 at 31 GHz with the Cosmic Background Imager (CBI) at a resolution of $4arcmin$. The region consists of two distinct components, G29.0-0.6 and G29.1-0.7, which are detected at high signal-to-noise ratio. The integrated flux density is $5.97pm0.30$ Jy at 31 GHz, in good agreement with the VSA. The 31 GHz flux density is $3.28pm0.38$ Jy ($8.6sigma$) above the expected value from optically thin free-free emission based on lower frequency radio data and thermal dust constrained by IRAS and WMAP data. Conventional emission mechanisms such as optically thick emission from ultracompact hii regions cannot easily account for this excess. We interpret the excess as evidence for electric dipole emission from small spinning dust grains, which does provide an adequate fit to the data.