Do you want to publish a course? Click here

The evolution of emission lines in HII galaxies

59   0   0.0 ( 0 )
 Added by Daniel Schaerer
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We constructed diagnostic diagrams using emission line ratios and equivalent widths observed in several samples of HII galaxies. The diagrams are compared to predictions from new photoionization models for evolving starbursts. We find that HII galaxies from objective-prism surveys are not reproduced by models of instantaneous starbursts surrounded by constant density, ionization bounded HII regions. The observed relations between emission line ratios and Hb equivalent width (W(Hb)) can be understood if older stellar populations are not negligible in HII galaxies. Also, different dust obscuration for stars and gas and leakage of Lyman continuum photons from the observed HII regions can be important. As a result, HII galaxies selected from objective-prism surveys are unlikely to contain many objects in which the most recent starburst is older than about 5~Myr. The observed increase of [OI]/Hb with decreasing W(Hb) can result from the dynamical effects of winds and supernovae. This interpretation provides also a natural explanation of the small range of ionization parameters in giant HII regions. The [OIII]/Hb vs [OII]/Hb diagnostic diagram cannot be fully understood in terms of pure photoionization models and indicate the need for additional heating sources. The [NII]/[OII] ratio is shown to increase as W(Hb) decreases. A possible explanation is an N/O increase due to gradual enrichment by winds from Wolf-Rayet stars on a time scale of 5 Myr. (abridged abstract)



rate research

Read More

110 - D. Rosa Gonzalez 2009
In an effort to understand the correlation between X-ray emission and present star formation rate (SFR), we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively starforming HII galaxies. The obtained X-ray luminosities are compared to other well known tracers of star formation activity such as the far infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Ha or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova remnants and high mass X-ray binaries (HMXB) which originate the radio and hard X-ray fluxes respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Ha luminosities) we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 10^8 years. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as supernova remnants, have a formation time delay of a few mega years after the starforming burst.
We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. Our sample consists of 31 HII galaxies, characterized by strong Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm observations were obtained. The radio spectral energy distribution has a range of behaviours; 1) there are galaxies where the SED is characterized by a synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with possible free-free absorption at long wavelengths. The latter SEDs were found in a few galaxies and represent a signature of heavily embedded massive star clusters closely related to the early stages of massive star formation. Based on the comparison of the star formation rates determined from the recombination lines and those determined from the radio emission we find that SFR(Ha) is on average five times higher than SFR(1.4GHz). We confirm this tendency by comparing the ratio between the observed flux at 20 cm and the expected one, calculated based on the Ha star formation rates, both for the galaxies in our sample and for normal ones. This analysis shows that this ratio is a factor of 2 smaller in our galaxies than in normal ones, indicating that they fall below the FIR/radio correlation. These results suggest that the emission of these galaxies is dominated by a recent and massive star formation event in which the first supernovae (SN) just started to explode. We conclude that the systematic lack of synchrotron emission in those systems with the largest equivalent width of Hb can only be explained if those are young starbursts of less than 3.5Myr of age.
We present the {sc warpfield} emission predictor, {sc warpfield-emp}, which couples the 1D stellar feedback code {sc warpfield} with the {sc cloudy} hii region/PDR code and the {sc polaris} radiative transfer code, in order to make detailed predictions for the time-dependent line and continuum emission arising from the H{sc ii} region and PDR surrounding an evolving star cluster. {sc warpfield-emp} accounts for a wide range of physical processes (stellar winds, supernovae, radiation pressure, gravity, thermal conduction, radiative cooling, dust extinction etc.) and yet runs quickly enough to allow us to explore broad ranges of different cloud parameters. We compare the results of an extensive set of models with SITELLE observations of a large sample of hii regions in NGC~628 and find very good agreement, particularly for the highest signal-to-noise observations. We show that our approach of modeling individual clouds from first principles (instead of in terms of dimensionless quantities such as the ionization parameter) allows us to avoid long-standing degeneracies in the interpretation of hii region diagnostics and enables us to relate these diagnostics to important physical parameters such as cloud mass or cluster age. Finally, we explore the implications of our models regarding the reliability of simple metallicity diagnostics, the properties of long-lived embedded clusters, and the role played by winds and supernovae in regulating hii region and PDR line emission.
103 - C. Kehrig 2006
A detailed spectroscopic study, from lambda 3700 A to 1 um, was performed for a sample of 34 HII galaxies in order to derive fundamental parameters for their HII regions and ionizing sources, as well as gaseous metal abundances. All the spectra included the nebular [SIII]9069,9532 A lines, given their importance in the derivation of the S/H abundance and relevant ionization diagnostics. A systematic method was followed to correct the near-IR [SIII] line fluxes for the effects of the atmospheric transmission.A comparative analysis of the predictions of the empirical abundance indicators R23 and S23 has been performed. The relative hardness of their ionizing sources was studied using the eta parameter, and exploring the role played by metallicity. For 22 galaxies of the sample a direct value of te[SIII] was derived, along with their ionic and total S/H abundances. Their ionic and total O/H abundances were derived using direct determinations of te[OIII].For the rest of the objects, the total S/H abundance was derived using S23. The abundance range covered by our sample goes from 1/20 solar up to solar metallicity. The mean S/O ratio derived is log (S/O)=-1.68+/-0.20 dex, 1 sigma below the solar S/O value. The S/O abundance ratio shows no significant trend with O/H over the range of abundance covered in this work, in agreement with previous findings.There is a trend for HII galaxies with lower gaseous metallicity to present harder ionizing spectra. We compared the distribution of the ionic ratios O+/O++ vs. S+/S++ derived for our sample with the predictions of a grid of photoionization models performed for different stellar effective temperatures. This analysis indicates that a large fraction of galaxies in our sample seem to be ionized by extremely hard spectra.
We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a changing look AGN and a broad-line radio galaxy. Based on continuum-H$beta$ lags, we measure black hole masses for all five targets. We also obtain H$gamma$ and He{sc ii},$lambda 4686$ lags for all objects except 3C 382. The He{sc ii},$lambda 4686$ lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100--300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا