No Arabic abstract
The statistical properties of a complete, flux limited sample of 197 long gamma--ray bursts (GRBs) detected by BATSE are studied. In order to bring forth their main characteristics, care was taken to define a representative set of ten parameters. A multivariate analysis gives that ~70% of the total variation in parameter values is driven by only three principal components. The variation of the temporal parameters is clearly distinct from that of the spectral ones. A close correlation is found between the half-width of the autocorrelation function (tau) and the emission time (Tem); most importantly, this correlation is self-similar in the sense that the mean values and dispersions of both tau and Tem scale with the duration of the burst (T90). It is shown that the Amati-relation can be derived from the sample and that the scatter around this relation is correlated with the value of tau. Hence, tau has a role similar to that of the break in the afterglow light curve (Tb) in the Ghirlanda-relation. In the standard GRB-scenario, the close relation between a global parameter (Tb) and a local one (tau) indicates that some of the jet-properties do not vary much for different lines of sight. Finally, it is argued that the basic temporal and spectral properties are associated with individual pulses, while the overall properties of a burst is determined mainly by the number of pulses.
Clustering is an important tool to describe gamma-ray bursts (GRBs). We analyzed the Final BATSE Catalog using Gaussian-mixture-models-based clustering methods for six variables (durations, peak flux, total fluence and spectral hardness ratios) that contain information on clustering. Our analysis found that the five kinds of GRBs previously found by other authors are only the cut groups of the previously well-known three types (short, long and intermediate in duration). The two short and intermediate duration groups differ mostly in the peak flux. Therefore, the reanalysis of the BATSE data finds similar group structures than previously. Because the brightness distribution is asymmetric and not correlated with durations or hardnesses the Gaussian mixture model cuts the Short and the Intermediate duration groups into two subgroups, the dim ones and the bright ones.
We examined the properties of a sample of BATSE Gamma--Ray Bursts (GRBs) comprising events which have indications of association with a supernova (SN), some on the basis of indications of re--brightening in the optical afterglow light curve, but in most cases based only on the `loose temporal and directional coincidence inferred from the cross correlation of catalogs. Despite of the large uncertainties in the latter selection method, the temporal and spectral analysis reveal three interesting statistical results when the sample is compared with that of all the BATSE GRBs: the GRBs tentatively associated with SNe are found to predominantly (in $sim$ 80% of the cases) have single-peaked light curves, a softer spectrum (i.e. low energy power law index $alpha sim$ --1.5) and tend not to follow the Lag-Luminosity and Isotropic Energy--Peak Energy correlations. These three independent statistical properties point toward the existence of a significant number of under-luminous,GRB 980425-like events constituting -- at least from an observational point of view -- a tail or a separate class with respect to the whole of the BATSE GRB events. The unusually high percentage of SN Ibc among those identified by the catalog cross--correlation (factor $sim 4$ higher than expected from SN catalog statistics) reinforces the non-randomness of (some of) the selected events.
We have recently completed a search of 6 years of archival BATSE data for gamma-ray bursts (GRBs) that were too faint to activate the real-time burst detection system running onboard the spacecraft. These non-triggered bursts can be combined with the triggered bursts detected onboard to produce a GRB intensity distribution that reaches peak fluxes a factor of 2 lower than could be studied previously. The value of the V/Vmax statistic (in Euclidean space) for the bursts we detect is 0.177 +/- 0.006. This surprisingly low value is obtained because we detected very few bursts on the 4.096 s and 8.192 s time scales (where most bursts have their highest signal-to-noise ratio) that were not already detected on the 1.024 s time scale. If allowance is made for a power-law distribution of intrinsic peak luminosities, the extended peak flux distribution is consistent with models in which the redshift distribution of the gamma-ray burst rate approximately traces the star formation history of the Universe. We argue that this class of models is preferred over those in which the burst rate is independent of redshift. We use the peak flux distribution to derive a limit of 10% (99% confidence) on the fraction of the total burst rate that could be contributed by a spatially homogeneous (in Euclidean space) subpopulation of burst sources, such as type Ib/c supernovae. These results lend support to the conclusions of previous studies predicting that relatively few faint classical GRBs will be found below the BATSE onboard detection threshold.
We compare the spectral properties of 227 Gamma Ray Bursts (GRBs) detected by the Fermi Gamma Ray Burst Monitor (GBM) up to February 2010 with those of bursts detected by the CGRO/BATSE instrument. Out of 227 Fermi GRBs, 166 have a measured peak energy E_peak_obs of their uF( u) spectrum: of these 146 and 20 belong the long and short class, respectively. Fermi long bursts follow the correlations defined by BATSE bursts between their E_peak_obs vs fluence and peak flux: as already shown for the latter ones, these correlations and their slopes do not originate from instrumental selection effects. Fermi/GBM bursts extend such correlations toward lower fluence/peak energy values with respect to BATSE ones whereas no GBM long burst with E_peak_obs exceeding a few MeV is found, despite the possibility of detecting them. Again as for BATSE, $sim$ 5% of long and almost all short GRBs detected by Fermi/GBM are outliers of the E_peak-isotropic equivalent energy (Amati) correlation while no outlier (neither long nor short) of the E_peak-isotropic equivalent luminosity (Yonetoku) correlation is found. Fermi long bursts have similar typical values of E_peak_obs but a harder low energy spectral index with respect to all BATSE events, exacerbating the inconsistency with the limiting slopes of the simplest synchrotron emission models. Although the short GRBs detected by Fermi are still only a few, we confirm that their E_peak_obs is greater and the low energy spectrum is harder than those of long ones. We discuss the robustness of these results with respect to observational biases induced by the differences between the GBM and BATSE instruments.
Six intensity groups with ~150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anti-correlation is found with good statistical significance during the average back slopes of bursts. A stretch factor ~2 is found between the 150 dimmest bursts, with peak flux <0.45ph cm^{-2} s^{-1}, and the 147 brightest bursts, with peak flux >4.1 ph cm^{-2} s^{-1}. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for burst with decreasing peak flux from >4.1 ph cm^{-2} s^{-1} down to 0.7 ph cm^{-2} s^{-1}, the magnitude of the stretching factor is less than ~ 1.4 and is therefore inconsistent with stretching factor of back slope.