Do you want to publish a course? Click here

Average Emissivity Curve of BATSE Gamma-Ray Bursts with Different Intensities

139   0   0.0 ( 0 )
 Added by Maxim Litvak
 Publication date 1999
  fields Physics
and research's language is English




Ask ChatGPT about the research

Six intensity groups with ~150 BATSE gamma-ray bursts each are compared using average emissivity curves. Time-stretch factors for each of the dimmer groups are estimated with respect to the brightest group, which serves as the reference, taking into account the systematics of counts-produced noise effects and choice statistics. A stretching/intensity anti-correlation is found with good statistical significance during the average back slopes of bursts. A stretch factor ~2 is found between the 150 dimmest bursts, with peak flux <0.45ph cm^{-2} s^{-1}, and the 147 brightest bursts, with peak flux >4.1 ph cm^{-2} s^{-1}. On the other hand, while a trend of increasing stretching factor may exist for rise fronts for burst with decreasing peak flux from >4.1 ph cm^{-2} s^{-1} down to 0.7 ph cm^{-2} s^{-1}, the magnitude of the stretching factor is less than ~ 1.4 and is therefore inconsistent with stretching factor of back slope.



rate research

Read More

We have recently completed a search of 6 years of archival BATSE data for gamma-ray bursts (GRBs) that were too faint to activate the real-time burst detection system running onboard the spacecraft. These non-triggered bursts can be combined with the triggered bursts detected onboard to produce a GRB intensity distribution that reaches peak fluxes a factor of 2 lower than could be studied previously. The value of the V/Vmax statistic (in Euclidean space) for the bursts we detect is 0.177 +/- 0.006. This surprisingly low value is obtained because we detected very few bursts on the 4.096 s and 8.192 s time scales (where most bursts have their highest signal-to-noise ratio) that were not already detected on the 1.024 s time scale. If allowance is made for a power-law distribution of intrinsic peak luminosities, the extended peak flux distribution is consistent with models in which the redshift distribution of the gamma-ray burst rate approximately traces the star formation history of the Universe. We argue that this class of models is preferred over those in which the burst rate is independent of redshift. We use the peak flux distribution to derive a limit of 10% (99% confidence) on the fraction of the total burst rate that could be contributed by a spatially homogeneous (in Euclidean space) subpopulation of burst sources, such as type Ib/c supernovae. These results lend support to the conclusions of previous studies predicting that relatively few faint classical GRBs will be found below the BATSE onboard detection threshold.
74 - Z. Bosnjak 2005
We examined the properties of a sample of BATSE Gamma--Ray Bursts (GRBs) comprising events which have indications of association with a supernova (SN), some on the basis of indications of re--brightening in the optical afterglow light curve, but in most cases based only on the `loose temporal and directional coincidence inferred from the cross correlation of catalogs. Despite of the large uncertainties in the latter selection method, the temporal and spectral analysis reveal three interesting statistical results when the sample is compared with that of all the BATSE GRBs: the GRBs tentatively associated with SNe are found to predominantly (in $sim$ 80% of the cases) have single-peaked light curves, a softer spectrum (i.e. low energy power law index $alpha sim$ --1.5) and tend not to follow the Lag-Luminosity and Isotropic Energy--Peak Energy correlations. These three independent statistical properties point toward the existence of a significant number of under-luminous,GRB 980425-like events constituting -- at least from an observational point of view -- a tail or a separate class with respect to the whole of the BATSE GRB events. The unusually high percentage of SN Ibc among those identified by the catalog cross--correlation (factor $sim 4$ higher than expected from SN catalog statistics) reinforces the non-randomness of (some of) the selected events.
The discovery of a number of gamma-ray bursts with duration exceeding 1,000 seconds, in particular the exceptional case of GRB 111209A with a duration of about 25,000 seconds, has opened the question on whether these bursts form a new class of sources, the so called {em ultra-long} GRBs, or if they are rather the tail of the distribution of the standard long GRB duration. In this Letter, using the long GRB sample detected by {em Swift}, we investigate on the statistical properties of ultra-long GRBs and compare them with the overall long burst population. We discuss also on the differences observed in their spectral properties. We find that ultra-long GRBs are statistically different from the standard long GRBs with typical burst duration less than 100-500 seconds, for which a Wolf Rayet star progenitor is usually invoked. We interpret this result as an indication that an alternative scenario has to be found in order to explain the ultra-long GRB extreme energetics, as well as the mass reservoir and its size that can feed the central engine for such a long time.
GRBs are now detected up to z = 8.26 . We try to find differences, in their restframe properties, which could be related either to distance or to observing conditions.
We consider the spatial offsets of short hard gamma-ray bursts (SHBs) from their host galaxies. We show that all SHBs with extended duration soft emission components lie very close to their hosts. We suggest that NS-BH binary mergers offer a natural explanation for the properties of this extended duration/low offset group. SHBs with large offsets have no observed extended emission components and are less likely to have an optically detected afterglow, properties consistent with NS-NS binary mergers occurring in low density environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا