Do you want to publish a course? Click here

The Possible z=0.83 Precursors of z=0 M* Early-type Cluster Galaxies

91   0   0.0 ( 0 )
 Added by Bradford Holden
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.



rate research

Read More

86 - Yujin Yang 2004
We present HST/WFPC2 observations of the five bluest E+A galaxies (z~0.1) in the Zabludoff et al. sample to study whether their detailed morphologies are consistent with late-to-early type evolution and to determine what drives that evolution. The morphologies of four galaxies are disturbed, indicating that a galaxy-galaxy merger is at least one mechanism that leads to the E+A phase. Two-dimensional image fitting shows that the E+As are generally bulge-dominated systems, even though at least two E+As may have underlying disks. In the Fundamental Plane, E+As stand apart from the E/S0s mainly due to their high effective surface brightness. Fading of the young stellar population and the corresponding increase in their effective radii will cause these galaxies to migrate toward the locus of E/S0s. E+As have profiles qualitatively like those of normal power-law early-type galaxies, but have higher surface brightnesses. This result provides the first direct evidence supporting the hypothesis that power-law ellipticals form via gas-rich mergers. In total, at least four E+As are morphologically consistent with early-type galaxies. We detect compact sources, possibly young star clusters, associated with the galaxies. These sources are much brighter (M_R ~ -13) than Galactic globular clusters, have luminosities consistent with the brightest clusters in nearby starburst galaxies, and have blue colors consistent with the ages estimated from the E+A galaxy spectra (several 10^8 yr). Further study of such young star cluster candidates might provide the elusive chronometer needed to break the age/burst-strength degeneracy for these post-merger galaxies.
379 - A. Fritz 2003
To examine the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23 we have gained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. This investigation spans both a broad range in luminosity (-19.3>M_B>-22.3) and uses a wide field of view of 10x10, therefore the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster centre. Here we present results on the surface brightness modelling of galaxies where morphological and structural information is available in the F814W filter aboard the Hubble Space Telescope (HST) and investigate for this subsample the evolution of the Fundamental Plane.
We have compiled a sample of early-type cluster galaxies from 0 < z < 1.3 and measured the evolution of their ellipticity distributions. Our sample contains 487 galaxies in 17 z>0.3 clusters with high quality space-based imaging and a comparable sample of 210 galaxies in 10 clusters at z<0.05. We select early-type galaxies (elliptical and S0 galaxies) that fall within the cluster R_{200}, and which lie on the red-sequence in the magnitude range -19.3 > M_B > -21, after correcting for luminosity evolution. Our ellipticity measurements are made in a consistent manner over our whole sample. We perform extensive simulations to quantify the systematic and statistical errors, and find that it is crucial to use PSF-corrected model fits. We find that neither the median ellipticity, nor the shape of the ellipticity distribution of cluster early-type galaxies evolves with redshift from z ~ 0 to z > 1. These results are strongly suggestive of an unchanging overall bulge-to-disk ratio distribution for cluster early-type galaxies over the last ~8Gyr. This result contrasts with that from visual classifications which show that the fraction of morphologically-selected disk-dominated early-type galaxies, or S0s, is significantly lower at z>0.4 than at z~0. Taking the ellipticity measurements and assuming, as in all previous studies, that the intrinsic ellipticity distribution of both elliptical and S0 galaxies remains constant, then we conclude from the lack of evolution in the observed early-type ellipticity distribution that the relative fractions of ellipticals and S0s do not evolve from z~1 to z=0 for a red-sequence selected samples of galaxies in the cores of clusters of galaxies.
We present a survey of X-ray point sources in a 91 ksec Chandra ACIS-S observation of the z=0.83 cluster MS1054-0321. We detect 47 X-ray sources within the 8.3 arcmin by 8.3 arcmin field, of which two are immediately confirmed from pre-existing spectroscopy to be at the redshift of the cluster. At fluxes brighter than S_(0.5 - 8 keV) = 5 x 10^{-15} erg s^{-1} cm^{-2} we find a ~ 2 sigma excess compared to predictions from field surveys, consistent with an excess of approximately 6 AGN. If these sources are associated with the cluster, they too are AGN with luminosities of order L_(0.5 - 8 keV) ~ 10^{43} erg s^{-1}. Combined with the identification of 7 cluster AGN from deep radio observations (Best et al. 2002), these observations suggest significantly enhanced AGN activity in MS1054-03 compared to local galaxy clusters. Interestingly, the excess of X-ray detected AGN is found at radial distances of between 1 and 2 Mpc, suggesting they may be associated with infalling galaxies. The radio AGN are seen within the inner Mpc of the cluster and are largely undetected in the X-ray, suggesting they are either intrinsically less luminous and/or heavily obscured.
138 - Benedetta Vulcani 2010
We present the ellipticity distribution and its evolution for early-type galaxies in clusters from z~0.8 to z~0, based on the WIde-field Nearby Galaxy-cluster Survey (WINGS)(0.04<z<0.07), and the ESO Distant Cluster Survey (EDisCS)(0.4<z<0.8). We first investigate a mass limited sample and we find that, above a fixed mass limit, the ellipticity distribution of early-types noticeably evolves with redshift. In the local Universe there are proportionally more galaxies with higher ellipticity, hence flatter, than in distant clusters. This evolution is due partly to the change of the mass distribution and mainly to the change of the morphological mix with z (among the early types, the fraction of ellipticals goes from ~70% at high to ~40% at low-z). Analyzing separately the ellipticity distribution of the different morphological types, we find no evolution both for ellipticals and S0s. However, for ellipticals a change with redshift in the median value of the distributions is detected. This is due to a larger population of very round (e<0.05) elliptical galaxies at low-z. To compare our finding to previous studies, we also assemble a magnitude-delimited sample that consists of early-type galaxies on the red sequence with -19.3>M_B+1.208z>-21. Analyzing this sample, we do not recover exactly the same results of the mass-limited sample. Hence the selection criteria are crucial to characterize the galaxy properties: the choice of the magnitude-delimited sample implies the loss of many less massive galaxies and so it biases the final results. Moreover, although we are adopting the same selection criteria, our results in the magnitude-delimited sample are also not in agreement with those of Holden et al.(2009). This is due to the fact that our and their low-z samples have a different magnitude distribution because the Holden et al.(2009) sample suffers from incompleteness at faint magnitudes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا