No Arabic abstract
To examine the evolution of the early-type galaxy population in the rich cluster Abell 2390 at z=0.23 we have gained spectroscopic data of 51 elliptical and lenticular galaxies with MOSCA at the 3.5 m telescope on Calar Alto Observatory. This investigation spans both a broad range in luminosity (-19.3>M_B>-22.3) and uses a wide field of view of 10x10, therefore the environmental dependence of different formation scenarios can be analysed in detail as a function of radius from the cluster centre. Here we present results on the surface brightness modelling of galaxies where morphological and structural information is available in the F814W filter aboard the Hubble Space Telescope (HST) and investigate for this subsample the evolution of the Fundamental Plane.
We present the first results on the identification and study of very distant field galaxies in the core of cluster-lenses, using a selection criterium based on both lens modelling and photometric redshifts. We concentrate on two multiple-imaged sources at z=4.05 in the cluster A2390. The 2 objects presented in this paper, namely H3 and H5, were identified through lens modelling as multiple images of high-redshift sources at z>3.5. We confirm the excellent agreement between this identification and both their photometric redshifts and morphologies. Our CFHT/WHT program for a systematic redshift survey of arcs in clusters has allowed to obtain a set of spectra on 3 different images at z~4: the brightest image of H3, which redshift was already confirmed by Frye & Broadhurst (1998), and the two brightest images of H5. The later is then confirmed spectroscopically as a multiple image, giving a strong support to the lens model. The main feature in each of these spectra is a strong emission line, identified as Ly-alpha, leading to z=4.05 for both H3 and H5. The spectrophotometric properties of these galaxies are studied, in particular the degeneracy in the parameter-space defined by the SFR type, age, metallicity and reddening. H3 and H5 are intrinsically bright and clumpy sources located ~100 kpc part on the source plane, with mean metallicities compatible with a fraction of solar or even solar values. All these results seem to favour a hierarchical merging scenario, where we are actually seeing a relatively advanced step for these 2 z~4 objects, with stars forming locally and efficiently from a preenriched gas.
We present deep ultraviolet observations of a field containing the cluster Abell 2246 (z=0.225) which provide far-ultraviolet (FUV) images of some of the faintest galaxies yet observed in that bandpass. Abell 2246 lies within the field of view of Ultraviolet Imaging Telescope (UIT) observations of the quasar HS1700+64, which accumulated over 7100 seconds of UIT FUV exposure time during the Astro-2 mission in March 1995. For objects found on both the FUV and ground-based V-band images, we obtain FUV (l ~ 1520 A) photometry and V-band photometry, as well as mid-UV (l ~ 2490 A) photometry from UIT Astro-1 observations and ground-based I-band photometry. We find five objects in the images which are probably galaxies at the distance of Abell 2246, with FUV magnitudes (m(FUV)) between 18.6 and 19.6, and V magnitudes between 18.4 and 19.6. We find that their absolute FUV fluxes and colors imply strongly that they are luminous galaxies with significant current star formation, as well as some relatively recent, but not current, (> 400 Myr ago) star formation. We interpret the colors of these five objects by comparing them with local objects, redshift-corrected template spectra and stellar population models, finding that they are plausibly matched by 10-Gyr-old population models with decaying star formation, with decay time constants in the range 3 Gyr < t < 5 Gyr, with an additional color component from a single burst of moderate ( ~ 400-500 Myr) age. From derived FUV luminosities we compute current star formation rates. We compare the UV properties of Abell 2246 with those of the Coma cluster, finding that Abell 2246 has significantly more recent star formation, consistent with the Butcher-Oemler phenomenon.
We present 1.4 GHz catalogs for the cluster fields Abell 370 and Abell 2390 observed with the Very Large Array. These are two of the deepest radio images of cluster fields ever taken. The Abell 370 image covers an area of 40x40 with a synthesized beam of ~1.7 and a noise level of ~5.7 uJy near field center. The Abell 2390 image covers an area of 34x34 with a synthesized beam of ~1.4 and a noise level of ~5.6 uJy near field center. We catalog 200 redshifts for the Abell 370 field. We construct differential number counts for the central regions (radius < 16) of both clusters. We find that the faint (S_1.4GHz < 3 mJy) counts of Abell 370 are roughly consistent with the highest blank field number counts, while the faint number counts of Abell 2390 are roughly consistent with the lowest blank field number counts. Our analyses indicate that the number counts are primarily from field radio galaxies. We suggest that the disagreement of our counts can be largely attributed to cosmic variance.
We examine the distribution of stellar masses of galaxies in MS 1054-03 and RX J0152.7-1357, two X-ray selected clusters of galaxies at z=0.83. Our stellar mass estimates, from spectral energy distribution fitting, reproduce the dynamical masses as measured from velocity dispersions and half-light radii with a scatter of 0.2 dex in the mass for early-type galaxies. When we restrict our sample of members to high stellar masses, > 1e11.1 Msun (M* in the Schechter mass function for cluster galaxies), we find that the fraction of early-type galaxies is 79 +/- 6% at z=0.83 and 87 +/- 6% at z=0.023 for the Coma cluster, consistent with no evolution. Previous work with luminosity-selected samples finds that the early-type fraction in rich clusters declines from =~80% at z=0 to =~60% at z=0.8. The observed evolution in the early-type fraction from luminosity-selected samples must predominately occur among sub-M* galaxies. As M* for field and group galaxies, especially late-types, is below M* for clusters galaxies, infall could explain most of the recent early-type fraction growth. Future surveys could determine the morphological distributions of lower mass systems which will confirm or refute this explanation.
We performed B and R band surface photometry for E/S0 galaxies in a nearby rich cluster ABELL 2199 to investigate their B-R color gradients (d(B-R)/dlogr). Our aims are to study statistical properties of the color gradients and, by comparing them with those in less dense environments, to examine environmental dependence of color gradients in elliptical galaxies. We studied the distribution of the B-R color gradients in the cluster ellipticals and found that the mean value of the color gradients is -0.09 +- 0.04 mag/dex, which can be converted to a metallicity gradient (dlogZ/dlogr) of ~ -0.3 +- 0.1 assuming an old stellar population. We further studied the relations between the B-R color gradients and global properties of the galaxies. Our data suggest that for the galaxies brighter than L*, more luminous and larger galaxies tend to have steeper color gradients. The typical value of the color gradients seems to be consistent with a recent monolithic collapse model and the correlation could also appear if elliptical galaxies formed through the monolithic collapse. On the contrary, it is found based on data from the literature that any such trend is clearly weaker for ellipticals in less dense environments, while the distribution of the color gradients is quite similar to that found in the rich cluster. Based on the results from our data and the published data, we discuss formation process of elliptical galaxy and its environmental dependence.