Do you want to publish a course? Click here

BOAO Photometric Survey of Galactic Open Clusters. III. Czernik 24 and Czernik 27

101   0   0.0 ( 0 )
 Added by Sang Chul Kim
 Publication date 2005
  fields Physics
and research's language is English
 Authors Sang Chul Kim




Ask ChatGPT about the research

We present BV CCD photometry for the open clusters Czernik 24 and Czernik 27. These clusters have never been studied before, and we provide, for the first time, the cluster parameters; reddening, distance, metallicity and age. Czernik 24 is an old open cluster with age 1.8 +/- 0.2 Gyr, metallicity [Fe/H]=-0.41 +/- 0.15 dex, distance modulus (m-M)_0 = 13.1 +/- 0.3 mag (d=4.1 +/- 0.5 kpc), and reddening E(B-V) = 0.54 +/- 0.12 mag. The parameters for Czernik 27 are estimated to be age = 0.63 +/- 0.07 Gyr, [Fe/H]= -0.02 +/- 0.10 dex, (m-M)_0 = 13.8 +/- 0.2 mag (d=5.8 +/- 0.5 kpc), and E(B-V) = 0.15 +/- 0.05 mag. The metallicity and distance values for Czernik 24 are consistent with the relation between the metallicity and the Galactocentric distance of other old open clusters. We find the metallicity gradient of 51 old open clusters including Czernik 24 to be Delta [Fe/H]/Delta R_gc= -0.064 +/- 0.009 dex/kpc.



rate research

Read More

We present a $UBVI$ photometric study of the open clusters Berkeley 24 (Be 24) and Czernik 27 (Cz 27). The radii of the clusters are determined as 2farcm7 and 2farcm3 for Be 24 and Cz 27, respectively. We use the Gaia Data Release 2 (GDR2) catalogue to estimate the mean proper motions for the clusters. We found the mean proper motion of Be 24 as $0.35pm0.06$ mas yr$^{-1}$ and $1.20pm0.08$ mas yr$^{-1}$ in right ascension and declination for Be 24 and $-0.52pm0.05$ mas yr$^{-1}$ and $-1.30pm0.05$ mas yr$^{-1}$ for Cz 27. We used probable cluster members selected from proper motion data for the estimation of fundamental parameters. We infer reddenings $E(B-V)$ = $0.45pm0.05$ mag and $0.15pm0.05$ mag for the two clusters. Analysis of extinction curves towards the two clusters show that both have normal interstellar extinction laws in the optical as well as in the near-IR band. From the ultraviolet excess measurement, we derive metallicities of [Fe/H]= $-0.025pm0.01$ dex and $-0.042pm0.01$ dex for the clusters Be 24 and Cz 27, respectively. The distances, as determined from main sequence fitting, are $4.4pm0.5$ kpc and $5.6pm0.2$ kpc. The comparison of observed CMDs with $Z=0.01$ isochrones, leads to an age of $2.0pm0.2$ Gyr and $0.6pm0.1$ Gyr for Be 24 and Cz 27, respectively. In addition to this, we have also studied the mass function and dynamical state of these two clusters for the first time using probable cluster members. The mass function is derived after including the corrections for data incompleteness and field star contamination. Our analysis shows that both clusters are now dynamically relaxed
We present the broad band UBVI CCD photometric investigations in the region of the two open clusters Haffner 11 and Czernik 31. The radii of the clusters are determined as 3.5 arcmin and 3.0 arcmin for Haffner 11 and Czernik 31 respectively. Using two colour (U-B) versus (B-V) diagram we determine the reddening E(B-V) = 0.50+/-0.05 mag and 0.48+/-0.05 mag for the cluster Haffner 11 and Czernik 31 respectively. Using 2MASS JHKs and optical data, we determined E(J-K) = 0.27+/-0.06 mag and E(V-K) = 1.37+/-0.06 for Haffner 11 and E(J-K) = 0.26+/-0.08 mag and E(V-K) = 1.32+/-0.08 mag for Czernik 31. Our analysis indicate normal interstellar extinction law in the direction of both the clusters. Distance of the clusters is determined as 5.8+/-0.5 Kpc for Haffner 11 and 3.2+/-0.3 Kpc for Czernik 31 by comparing the ZAMS with the CM diagram of the clusters. The age of the cluster has been estimated as 800+/-100 Myr for Haffner 11 and 160+/-40 Myr for Czernik 31 using the stellar isochrones of metallicity Z = 0.019.
The morphology and cluster membership of the Galactic open clusters - Czernik 20 and NGC 1857 were analyzed using two different clustering algorithms. We present the maiden use of density-based spatial clustering of applications with noise (DBSCAN) to determine open cluster morphology from spatial distribution. The region of analysis has also been spatially classified using a statistical membership determination algorithm. We utilized near infrared (NIR) data for a suitably large region around the clusters from the United Kingdom Infrared Deep Sky Survey Galactic Plane Survey star catalogue database, and also from the Two Micron All Sky Survey star catalogue database. The densest regions of the cluster morphologies (1 for Czernik 20 and 2 for NGC 1857) thus identified were analyzed with a K-band extinction map and color-magnitude diagrams (CMDs). To address significant discrepancy in known distance and reddening parameters, we carried out field decontamination of these CMDs and subsequent isochrone fitting of the cleaned CMDs to obtain reliable distance and reddening parameters for the clusters (Czernik 20: D = 2900 pc; E(J-K) = 0.33; NGC 1857: D = 2400 pc; E(J-K) = 0.18-0.19). The isochrones were also used to convert the luminosity functions for the densest regions of Czernik 20 and NGC 1857 into mass function, to derive their slopes. Additionally, a previously unknown over-density consistent with that of a star cluster is identified in the region of analysis.
We present BVI photometry for poorly known southern hemisphere open clusters: NGC 2425, Haffner 10 and Czernik 29. We have calculated the density profile and established the number of stars in each cluster. The colour-magnitude diagrams of the objects show a well-defined main sequence. However, the red giant clump is present only in NGC 2425 and Haffner 10. For these two clusters we estimated the age as 2.5 +/- 0.5 Gyr assuming metallicity of Z=0.008. The apparent distance moduli are in the ranges 13.2<(m-M)_V<13.6 and 14.3<(m-M)_V<14.7, while heliocentric distances are estimated to be 2.9<d<3.8 kpc and 3.1<d<4.3 kpc, respectively for NGC 2425 and Haffner 10. The angular separation of 2.4 deg (150 pc at mean distance) may indicate a common origin of the two clusters.
73 - B. Akbulut , S. Ak , T.Yontan 2021
We analysed the open clusters Czernik 2 and NGC 7654 using CCD UBV photometric and Gaia Early Data Release 3 (EDR3) photometric and astrometric data. Structural parameters of the two clusters were derived, including the physical sizes of Czernik 2 being r=5 and NGC 7654 as 8 min. We calculated membership probabilities of stars based on their proper motion components as released in the Gaia EDR3. To identify member stars of the clusters, we used these membership probabilities taking into account location and the impact of binarity on main-sequence stars. We used membership probabilities higher than $P=0.5$ to identify 28 member stars for Czernik 2 and 369 for NGC 7654. We estimated colour-excesses and metallicities separately using two-colour diagrams to derive homogeneously determined parameters. The derived $E(B-V)$ colour excess is 0.46(0.02) mag for Czernik 2 and 0.57(0.04) mag for NGC 7654. Metallicities were obtained for the first time for both clusters, -0.08(0.02) dex for Czernik 2 and -0.05(0.01) dex for NGC 7654. Keeping the reddening and metallicity as constant quantities, we fitted PARSEC models using colour-magnitude diagrams, resulting in estimated distance moduli and ages of the two clusters. We obtained the distance modulus for Czernik 2 as 12.80(0.07) mag and for NGC 7654 as 13.20(0.16) mag, which coincide with ages of 1.2(0.2) Gyr and 120(20) Myr, respectively. The distances to the clusters were calculated using the Gaia EDR3 trigonometric parallaxes and compared with the literature. We found good agreement between the distances obtained in this study and the literature. Present day mass function slopes for both clusters are comparable with the value of Salpeter (1955), being X=-1.37(0.24) for Czernik 2 and X=-1.39(0.19) for NGC 7654.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا