Do you want to publish a course? Click here

Internal kinematics of isolated modelled disk galaxies

108   0   0.0 ( 0 )
 Added by Wolfgang Kapferer
 Publication date 2005
  fields Physics
and research's language is English
 Authors W. Kapferer




Ask ChatGPT about the research

We present a systematic investigation of rotation curves (RCs) of fully hydrodynamically simulated galaxies, including cooling, star formation with associated feedback and galactic winds. Applying two commonly used fitting formulae to characterize the RCs, we investigate systematic effects on the shape of RCs both by observational constraints and internal properties of the galaxies. We mainly focus on effects that occur in measurements of intermediate and high redshift galaxies. We find that RC parameters are affected by the observational setup, like slit misalignment or the spatial resolution and also depend on the evolution of a galaxy. Therefore, a direct comparison of quantities derived from measured RCs with predictions of semi-analytic models is difficult. The virial velocity V_c, which is usually calculated and used by semi-analytic models can differ significantly from fit parameters like V_max or V_opt inferred from RCs. We find that V_c is usually lower than typical characteristic velocities derived from RCs. V_max alone is in general not a robust estimator for the virial mass.



rate research

Read More

85 - T. Kronberger 2006
We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys disturb the velocity fields significantly and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are significantly rising or falling profiles in the direction of the companion galaxy and pronounced bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. We use a quantitative measure for the asymmetry of rotation curves to show that the appearance of these distortions strongly depends on the viewing angle. We also find in this way that the velocity fields settle back into relatively undisturbed equilibrium states after unequal mass mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no severe distortions anymore. These results are consistent with previous theoretical and observational studies. As an illustration of our results, we compare our simulated velocity fields and direct images with rotation curves from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find remarkable similarities.
We describe the dynamical properties which may be inferred from HST/STIS spectroscopic observations of luminous compact blue galaxies (LCBGs) between 0.1<z<0.7. While the sample is homogeneous in blue rest-frame color, small size and line-width, and high surface-brightness, their detailed morphology is eclectic. Here we determine the amplitude of rotation versus random, or disturbed motions of the ionized gas. This information affirms the accuracy of dynamical mass and M/L estimates from Keck integrated line-widths, and hence also the predictions of the photometric fading of these unusual galaxies. The resolved kinematics indicates this small subset of LCBGs are dynamically hot, and unlikely to be embedded in disk systems.
The status of kinematic observations in Local Group dwarf spheroidal galaxies (dSphs) is reviewed. Various approaches to the dynamical modelling of these data are discussed and some general features of dSph dark matter haloes based on simple mass models are presented.
We present first results from our project to examine the internal kinematics of disk galaxies in 7 rich clusters with 0.3<=z<0.6. Spatially resolved MOS spectra have been obtained with FORS at the VLT. We concentrate here on the clusters MS1008.1-1224 at z=0.30 and Cl0413-6559 (F1557.19TC) at z=0.51. Out of 22 cluster members, 12 galaxies exhibit a rotation curve of the universal form rising in the inner region and passing over into a flat part. The other members have intrinsically peculiar kinematics. The 12 cluster galaxies for which a maximum rotation velocity could be derived are distributed in the Tully-Fisher diagram very similar to field galaxies from the FORS Deep Field with corresponding redshifts. The same is true for 6 galaxies observed in the cluster fields that turned out not to be members. In particular, these cluster spirals do not show any significant luminosity evolution as might be expected from certain clusterspecific phenomena. Contrary to that, the other half of the cluster sample with disturbed kinematics also shows a higher degree of structural assymetries on average indicating ongoing or recent interaction processes.
We have observed 10 interacting galaxy pairs using the Fabry-Perot interferometer GH$alpha$FaS (Galaxy H$alpha$ Fabry-Perot system) on the $4.2rm{m}$ William Herschel Telescope (WHT) at the Observatorio del Roque de los Muchachos, La Palma. We present here the H$alpha$ surface brightness, velocity and velocity dispersion maps for the 10 systems we have not previously observed using this technique, as well as the physical properties (sizes, H$alpha$ luminosities and velocity dispersion) of 1259 HII regions from the full sample. We also derive the physical properties of 1054 HII regions in a sample of 28 isolated galaxies observed with the same instrument in order to compare the two populations of HII regions. We find a population of the brightest HII regions for which the scaling relations, for example the relation between the H$alpha$ luminosity and the radius, are clearly distinct from the relations for the regions of lower luminosity. The regions in this bright population are more frequent in the interacting galaxies. We find that the turbulence, and also the star formation rate, are enhanced in the HII regions in the interacting galaxies. We have also extracted the H$alpha$ equivalent widths for the HII regions of both samples, and we have found that the distribution of HII region ages coincides for the two samples of galaxies. We suggest that the SFR enhancement is brought about by gas flows induced by the interactions, which give rise to gravitationally bound gas clouds which grow further by accretion from the flowing gas, producing conditions favourable to star formation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا