Do you want to publish a course? Click here

Comparative internal kinematics of the HII regions in interacting and isolated galaxies: implications for massive star formation modes

103   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have observed 10 interacting galaxy pairs using the Fabry-Perot interferometer GH$alpha$FaS (Galaxy H$alpha$ Fabry-Perot system) on the $4.2rm{m}$ William Herschel Telescope (WHT) at the Observatorio del Roque de los Muchachos, La Palma. We present here the H$alpha$ surface brightness, velocity and velocity dispersion maps for the 10 systems we have not previously observed using this technique, as well as the physical properties (sizes, H$alpha$ luminosities and velocity dispersion) of 1259 HII regions from the full sample. We also derive the physical properties of 1054 HII regions in a sample of 28 isolated galaxies observed with the same instrument in order to compare the two populations of HII regions. We find a population of the brightest HII regions for which the scaling relations, for example the relation between the H$alpha$ luminosity and the radius, are clearly distinct from the relations for the regions of lower luminosity. The regions in this bright population are more frequent in the interacting galaxies. We find that the turbulence, and also the star formation rate, are enhanced in the HII regions in the interacting galaxies. We have also extracted the H$alpha$ equivalent widths for the HII regions of both samples, and we have found that the distribution of HII region ages coincides for the two samples of galaxies. We suggest that the SFR enhancement is brought about by gas flows induced by the interactions, which give rise to gravitationally bound gas clouds which grow further by accretion from the flowing gas, producing conditions favourable to star formation.

rate research

Read More

We present mid-infrared (MIR) spectra of HII regions within star-forming galaxies M83 and M33. Their emission features are compared with Galactic and extragalactic HII regions, HII-type galaxies, starburst galaxies, and Seyfert/LINER type galaxies. Our main results are as follows: (i) the M33 and M83 HII regions lie in between Seyfert/LINER galaxies and HII-type galaxies in the 7.7/11.3 - 6.2/11.3 plane, while the different sub-samples exhibiting different 7.7/6.2 ratios; (ii) Using the NASA Ames PAH IR Spectroscopic database, we demonstrate that the 6.2/7.7 ratio does not effectively track PAH size, but the 11.3/3.3 PAH ratio does; (iii) variations on the 17 $mu$m PAH band depends on object type; however, there is no dependence on metallicity for both extragalactic HII regions and galaxies; (iv) the PAH/VSG intensity ratio decreases with the hardness of the radiation field and galactocentric radius (Rg), yet the ionization alone cannot account for the variation seen in all of our sources; (v) the relative strength of PAH features does not change significantly with increasing radiation hardness, as measured through the [NeIII]/[NeII] ratio and the ionization index; (vi) We present PAH SFR calibrations based on the tight correlation between the 6.2, 7.7, and 11.3 $mu$m PAH luminosities with the 24 $mu$m luminosity and the combination of the 24 $mu$m and H$alpha$ luminosity; (vii) Based on the total luminosity from PAH and FIR emission, we argue that extragalactic HII regions are more suitable templates in modeling and interpreting the large scale properties of galaxies compared to Galactic HII regions.
We present a multiwavelength (ultraviolet, infrared, optical and CO) study of a set of luminous HII regions in M33: NGC 604, NGC 595, NGC 592, NGC 588 and IC131. We study the emission distribution in the interiors of the HII regions to investigate the relation between the dust emission at 8 micron and 24 micron and the location of the massive stars and gas. We find that the 24 micron emission is closely related to the location of the ionized gas, while the 8 micron emission is more related to the boundaries of the molecular clouds consistently with its expected association with photodissociation regions (PDRs). Ultraviolet emission is generally surrounded by the H-alpha emission. For NGC 604 and NGC 595, where CO data are available, we see a radial gradient of the emission distribution at the wavelengths studied here: from the center to the boundary of the HII regions we observe ultraviolet, H-alpha, 24 micron, 8 micron and CO emission distributions. We quantify the star formation for our HII regions using the integrated fluxes at the set of available wavelengths, assuming an instantaneous burst of star formation. We show that a linear combination of 24 micron and H-alpha emission better describes the star formation for these objects than the dust luminosities by themselves. For NGC 604, we obtain and compare extinction maps derived from the Balmer decrement and from the 24 micron and H-alpha emission line ratio. Although the maps show locally different values in extinction, we find similar integrated extinctions derived from the two methods. We also investigate here the possible existence of embedded star formation within NGC 604.
Star formation rates in galaxies are frequently estimated using the Balmer line fluxes. However, these can be systematically underestimated because dust competes for the absorption of Lyman continuum photons in the ionized gas. Here we present theoretical correction factors in a simple analytic form. T These factors scale as the product of the ionization parameter, ${cal U}$, and the nebular O/H abundance ratio, both of which can now be derived from the observation of bright nebular line ratios. The correction factors are only somewhat dependent upon the photoelectron production by grains, but are very sensitive to the presence of complex PAH-like carbonaceous molecules in the ionized gas, providing that these can survive in such an environment.
Interacting galaxies are known to have higher global rates of star formation on average than normal galaxies, relative to their stellar masses. Using UV and IR photometry combined with new and published H-alpha images, we have compared the star formation rates of ~700 star forming complexes in 46 nearby interacting galaxy pairs with those of regions in 39 normal spiral galaxies. The interacting galaxies have proportionally more regions with high star formation rates than the spirals. The most extreme regions in the interacting systems lie at the intersections of spiral/tidal structures, where gas is expected to pile up and trigger star formation. Published Hubble Telescope images show unusually large and luminous star clusters in the highest luminosity regions. The star formation rates of the clumps correlate with measures of the dust attenuation, consistent with the idea that regions with more interstellar gas have more star formation. For the clumps with the highest star formation rates, the apparent dust attenuation is consistent with the Calzetti starburst dust attenuation law. This suggests that the high luminosity regions are dominated by a central group of young stars surrounded by a shell of clumpy interstellar gas. In contrast, the lower luminosity clumps are bright in the UV relative to H-alpha, suggesting either a high differential attenuation between the ionized gas and the stars, or a post-starburst population bright in the UV but faded in H-alpha. The fraction of the global light of the galaxies in the clumps is higher on average for the interacting galaxies than for the spirals. Thus the star forming regions in interacting galaxies are more luminous, dustier, or younger on average.
We present a novel, physically-motivated sub-grid model for HII region feedback within the moving mesh code Arepo, accounting for both the radiation pressure-driven and thermal expansion of the ionised gas surrounding young stellar clusters. We apply this framework to isolated disc galaxy simulations with mass resolutions between $10^3~{rm M}_odot$ and $10^5~{rm M}_odot$ per gas cell. Each simulation accounts for the self-gravity of the gas, the momentum and thermal energy from supernovae, the injection of mass by stellar winds, and the non-equilibrium chemistry of hydrogen, carbon and oxygen. We reduce the resolution-dependence of our model by grouping those HII regions with overlapping ionisation front radii. The Str{o}mgren radii of the grouped HII regions are at best marginally-resolved, so that the injection of purely-thermal energy within these radii has no effect on the interstellar medium. By contrast, the injection of momentum increases the fraction of cold and molecular gas by more than 50 per cent at mass resolutions of $10^3~{rm M}_odot$, and decreases its turbulent velocity dispersion by $sim 10~{rm kms}^{-1}$. The mass-loading of galactic outflows is decreased by an order of magnitude. The characteristic lifetime of the least-massive molecular clouds ($M/{rm M}_odot < 5.6 times 10^4$) is reduced from $sim 18$ Myr to $<10$ Myr, indicating that HII region feedback is effective in destroying these clouds. Conversely, the lifetimes of intermediate-mass clouds ($5.6 times 10^4 < M/{rm M}_odot < 5 times 10^5$) are elongated by $sim 7$ Myr, likely due to a reduction in supernova clustering. The derived cloud lifetimes span the range from $10$-$40$ Myr, in agreement with observations. All results are independent of whether the momentum is injected from a spherical or a blister-type HII region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا