Do you want to publish a course? Click here

Probing The Dust-To-Gas Ratio of z > 0 Galaxies Through Gravitational Lenses

76   0   0.0 ( 0 )
 Added by Xinyu Dai
 Publication date 2005
  fields Physics
and research's language is English
 Authors Xinyu Dai




Ask ChatGPT about the research

We report the detection of differential gas column densities in three gravitational lenses, MG0414+0534, HE1104-1805, and PKS1830-211. Combined with the previous differential column density measurements in B1600+434 and Q2237+0305 and the differential extinction measurements of these lenses, we probe the dust-to-gas ratio of a small sample of cosmologically distant normal galaxies. We obtain an average dust-to-gas ratio of E(B-V)/NH =(1.4pm0.5) e-22 mag cm^2/atoms with an estimated intrinsic dispersion in the ratio of ~40%. This average dust-to-gas ratio is consistent with the average Galactic value of 1.7e-22 mag cm^2/atoms and the estimated intrinsic dispersion is also consistent with the 30% observed in the Galaxy.



rate research

Read More

123 - D. Schaerer 2006
Observing the first galaxies formed during the reionisation epoch, i.e. approximately within the first billion years after the Big Bang, remains one of the challenges of contemporary astrophysics. Several efforts are being undertaken to search for such remote objects. Combining the near-IR imaging power of the VLT and the natural effect of strong gravitational lensing our pilot program has allowed us to identify several galaxy candidates at redshift 6 <~ z <~ 10. The properties of these objects and the resulting constraints on the star formation rate density at high redshift are discussed. Finally we present the status of follow-up observations (ISAAC spectroscopy, HST and Spitzer imaging) and discuss future developments.
63 - E.E. Falco 1999
We determine 37 differential extinctions in 23 gravitational lens galaxies over the range 0 < z_l < 1. Only 7 of the 23 systems have spectral differences consistent with no differential extinction. The median differential extinction for the optically-selected (radio-selected) subsample is E(B-V)=0.04 (0.06) mag. The extinction is patchy and shows no correlation with impact parameter. The median total extinction of the bluest images is E(B-V)=0.08 mag, although the total extinction distribution is dominated by the uncertainties in the intrinsic colors of quasars. The directly measured extinction distributions are consistent with the mean extinction estimated by comparing the statistics of quasar and radio lens surveys, thereby confirming the need for extinction corrections when using the statistics of lensed quasars to estimate the cosmological model. A disjoint subsample of two face-on, radio-selected spiral lenses shows both high differential and total extinctions, but standard dust-to-gas ratios combined with the observed molecular gas column densities overpredict the amount of extinction by factors of 2-5. For several systems we can estimate the extinction law, ranging from R_V=1.5+/-0.2 for a z_l=0.96 elliptical, to R_V=7.2+/-0.1 for a z_l=0.68 spiral. For the four radio lenses where we can construct non-parametric extinction curves we find no evidence for gray dust over the IR-UV wavelength range. The dust can be used to estimate lens redshifts with reasonable accuracy, although we sometimes find two degenerate redshift solutions.
106 - F. Pozzi , F. Calura , G. Zamorani 2019
We derive for the first time the dust mass function (DMF) in a wide redshift range, from z~0.2 up to z~2.5. In order to trace the dust emission, we start from a far-IR (160-um) Herschel selected catalogue in the COSMOS field. We estimate the dust masses by fitting the far-IR data (lam_rest>50um) with a modified black body function and we present a detailed analysis to take into account the incompleteness in dust masses from a far-IR perspective. By parametrizing the observed DMF with a Schechter function in the redshift range 0.1<z<0.25, where we are able to sample faint dust masses, we measure a steep slope (alpha~1.48), as found by the majority of works in the Local Universe. We detect a strong dust mass evolution, with M_d^star at z~2.5 almost one dex larger than in the local Universe, combined with a decrease in their number density. Integrating our DMFs we estimate the dust mass density (DMD), finding a broad peak at z~1, with a decrease by a factor of ~3 towards z~0 and z~2.5. In general, the trend found for the DMD mostly agrees with the derivation of Driver et al. (2018), another DMD determination based also on far-IR detections, and with other measures based on indirect tracers.
We perform numerical simulations of dusty, supersonic turbulence in molecular clouds. We model 0.1, 1 and 10 {mu}m sized dust grains at an initial dust-to-gas mass ratio of 1:100, solving the equations of combined gas and dust dynamics where the dust is coupled to the gas through a drag term. We show that, for 0.1 and 1 {mu}m grains, the dust-to-gas ratio deviates by typically 10-20% from the mean, since the stopping time of the dust due to gas drag is short compared to the dynamical time. Contrary to previous findings, we find no evidence for orders of magnitude fluctuation in the dust-to-gas ratio for 0.1 {mu}m grains. Larger, 10 {mu}m dust grains may have dust-to-gas ratios increased by up to an order of magnitude locally. Both small (0.1 {mu}m) and large ($gtrsim$ 1 {mu}m) grains trace the large-scale morphology of the gas, however we find evidence for size-sorting of grains, where turbulence preferentially concentrates larger grains into dense regions. Size-sorting may help to explain observations of coreshine from dark clouds, and why extinction laws differ along lines of sight through molecular clouds in the Milky Way compared to the diffuse interstellar medium.
We present kiloparsec (kpc) spatial resolution maps of the CO-to-H2 conversion factor (alpha_co) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for alpha_co and DGR by assuming that the DGR is approximately constant on kpc scales. With this assumption, we can combine maps of dust mass surface density, CO integrated intensity and HI column density to solve for both alpha_co and DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high resolution far-IR maps from the Herschel key program KINGFISH, 12CO J=(2-1) maps from the IRAM 30m large program HERACLES and HI 21-cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our alpha_co results on the more typically used 12CO J=(1-0) scale and show using literature measurements that variations in the line ratio do not effect our results. In total, we derive 782 individual solutions for alpha_co and DGR. On average, alpha_co = 3.1 Msun pc^-2 (K km s^-1)^-1 for our sample with a standard deviation of 0.3 dex. Within galaxies we observe a generally flat profile of alpha_co as a function of galactocentric radius. However, most galaxies exhibit a lower alpha_co in the central kpc---a factor of ~2 below the galaxy mean, on average. In some cases, the central alpha_co value can be factors of 5 to 10 below the standard Milky Way (MW) value of alpha_co,MW =4.4 Msun pc^-2 (K km s^-1)^-1. While for alpha_co we find only weak correlations with metallicity, DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate alpha_co for studies of nearby galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا