No Arabic abstract
High-velocity galactic outflows, driven by intense bursts of star formation and black hole accretion, are invoked by current theories of galaxy formation to terminate star formation in the most massive galaxies and to deposit heavy elements in the intergalactic medium. From existing observational evidence on high-redshift galaxies, it is unclear whether such outflows are localized to regions of intense star formation just a few kiloparsecs in extent, or whether they instead have a significant impact on the entire galaxy and its surroundings. Here we present two-dimensional spectroscopy of a star-forming galaxy at redshift z=3.09 (seen 11.5 Gyr ago, when the Universe was 20 per cent of its current age): its spatially extended Ly-alpha emission appears to be absorbed by HI in a foreground screen covering the entire galaxy, with a lateral extent of at least 100 kpc and remarkable velocity coherence. It was plausibly ejected from the galaxy during a starburst several 1E8 yr earlier and has subsequently swept up gas from the surrounding intergalactic medium and cooled. This demonstrates the galaxy-wide impact of high-redshift superwinds.
In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z$sim$2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z$sim$3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7$times$10$^{11}$ M$_odot$ whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.
During the course of our deep optical imaging survey for Ly alpha emitters at z approximately 5.7 in the field around the z=5.74 quasar SDSSp J104433.04-012502.2, we have found a candidate strong emission-line source. Follow-up optical spectroscopy shows that the emission line profile of this object is asymmetric, showing excess red-wing emission. These properties are consistent with an identification of Ly alpha emission at a redshift of z=5.687 +/- 0.002. The observed broad line width, Delta V_{FWHM} ~= 340 km s^{-1} and excess red-wing emission also suggest that this object hosts a galactic superwind.
We present the discovery of a massive, quiescent galaxy at z=2.99. We have obtained a HST/WFC3 spectrum of this object and measured its redshift from the detection of a deep 4000A break consistent with an old population and a high metallicity. By stellar population modeling of both its grism spectrum and broad-band photometry, we derive an age of ~0.7 Gyr, implying a formation redshift of z>4, and a mass >10^11 Msun. Although this passive galaxy is the most distant confirmed so far, we find that it is slightly less compact than other z>2 early-types of similar mass, being overall more analogous to those z~1.6 field early-type galaxies. The discovery of this object shows that early-type galaxies are detectable to at least z=3 and suggests that the diversity of structural properties found in z=1.4-2 ellipticals to earlier epochs could have its origin in a variety of formation histories among their progenitors.
When galaxy formation started in the history of the Universe remains unclear. Studies of the cosmic microwave background indicate that the Universe, after initial cooling (following the Big Bang), was reheated and reionized by hot stars in newborn galaxies at a redshift in the range 6 < z < 14 (ref. 1). Though several candidate galaxies at redshift z > 7 have been identified photometrically (refs 2,3), galaxies with spectroscopically confirmed redshifts have been confined to z < 6.6 (refs. 4-8). Here we report a spectroscopic redshift of z = 6.96 (corresponding to just 750 Myr after the Big Bang) for a galaxy whose spectrum clearly shows Lyman-alpha emission at 9,682 A, indicating active star formation at a rate of about 10 M_sun/yr, where M_sun us the mass of the Sun. This demonstrates that galaxy formation was under way when the Universe was only about 6 per cent of its present age. The number density of galaxies at z = 7 seems to be only 18-36 per cent of the density at z = 6.6.
We report on the discovery of a very distant galaxy cluster serendipitously detected in the archive of the XMM-Newton mission, within the scope of the XMM-Newton Distant Cluster Project (XDCP). XMMUJ0044.0-2033 was detected at a high significance level (5sigma) as a compact, but significantly extended source in the X-ray data, with a soft-band flux f(r<40)=(1.5+-0.3)x10^(-14) erg/s/cm2. Optical/NIR follow-up observations confirmed the presence of an overdensity of red galaxies matching the X-ray emission. The cluster was spectroscopically confirmed to be at z=1.579 using ground-based VLT/FORS2 spectroscopy. The analysis of the I-H colour-magnitude diagram shows a sequence of red galaxies with a colour range [3.7 < I-H < 4.6] within 1 from the cluster X-ray emission peak. However, the three spectroscopic members (all with complex morphology) have significantly bluer colours relative to the observed red-sequence. In addition, two of the three cluster members have [OII] emission, indicative of on-going star formation. Using the spectroscopic redshift we estimated the X-ray bolometric luminosity, Lbol = 5.8x10^44 erg/s, implying a massive galaxy cluster. This places XMMU J0044.0-2033 at the forefront of massive distant clusters, closing the gap between lower redshift systems and recently discovered proto- and low-mass clusters at z >1.6.