Do you want to publish a course? Click here

A galaxy at a redshift z = 6.96

76   0   0.0 ( 0 )
 Added by Masanori Iye Prof.
 Publication date 2006
  fields Physics
and research's language is English




Ask ChatGPT about the research

When galaxy formation started in the history of the Universe remains unclear. Studies of the cosmic microwave background indicate that the Universe, after initial cooling (following the Big Bang), was reheated and reionized by hot stars in newborn galaxies at a redshift in the range 6 < z < 14 (ref. 1). Though several candidate galaxies at redshift z > 7 have been identified photometrically (refs 2,3), galaxies with spectroscopically confirmed redshifts have been confined to z < 6.6 (refs. 4-8). Here we report a spectroscopic redshift of z = 6.96 (corresponding to just 750 Myr after the Big Bang) for a galaxy whose spectrum clearly shows Lyman-alpha emission at 9,682 A, indicating active star formation at a rate of about 10 M_sun/yr, where M_sun us the mass of the Sun. This demonstrates that galaxy formation was under way when the Universe was only about 6 per cent of its present age. The number density of galaxies at z = 7 seems to be only 18-36 per cent of the density at z = 6.6.



rate research

Read More

216 - M. D. Lehnert 2010
Galaxies had their most significant impact on the Universe when they assembled their first generations of stars. Energetic photons emitted by young, massive stars in primeval galaxies ionized the intergalactic medium surrounding their host galaxies, cleared sight-lines along which the light of the young galaxies could escape, and fundamentally altered the physical state of the intergalactic gas in the Universe continuously until the present day. Observations of the Cosmic Microwave Background, and of galaxies and quasars at the highest redshifts, suggest that the Universe was reionised through a complex process that was completed about a billion years after the Big Bang, by redshift z~6. Detecting ionizing Ly-alpha photons from increasingly distant galaxies places important constraints on the timing, location and nature of the sources responsible for reionisation. Here we report the detection of Ly-a photons emitted less than 600 million years after the Big Bang. UDFy-38135539 is at a redshift z=8.5549+-0.0002, which is greater than those of the previously known most distant objects, at z=8.2 and z=6.97. We find that this single source is unlikely to provide enough photons to ionize the volume necessary for the emission line to escape, requiring a significant contribution from other, probably fainter galaxies nearby.
In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z$sim$2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z$sim$3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7$times$10$^{11}$ M$_odot$ whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.
In the optical sky, minutes-duration transients from cosmological distances are rare. Known objects that give rise to such transients include gamma-ray bursts (GRBs), the most luminous explosions in the universe that have been detected at redshift as high as z ~ 9.4. These high-redshift GRBs and their associated emission can be used to probe the star formation and reionization history in the era of cosmic dawn. Here we report a near-infrared transient with an observed duration shorter than 245 s coincident with the luminous star-forming galaxy GN-z11 at z ~ 11. The telluric absorption shown in the near-infrared spectrum indicates its origin from above the atmosphere. We can rule out the possibility of known man-made objects or moving objects in the Solar system based on the observational information and our current understanding of the properties of these objects. Since some long-duration GRBs are associated with a bright ultraviolet (UV) or optical flash, we investigate the possibility that the detected signal arose from a rest-frame UV flash associated with a long GRB from GN-z11. Despite the very low probability of being a GRB, we find that the spectrum, brightness, and duration of the transient are consistent with such an interpretation. Our result may suggest that long GRBs can be produced as early as 420 million years after the Big Bang.
76 - R. J. Wilman 2005
High-velocity galactic outflows, driven by intense bursts of star formation and black hole accretion, are invoked by current theories of galaxy formation to terminate star formation in the most massive galaxies and to deposit heavy elements in the intergalactic medium. From existing observational evidence on high-redshift galaxies, it is unclear whether such outflows are localized to regions of intense star formation just a few kiloparsecs in extent, or whether they instead have a significant impact on the entire galaxy and its surroundings. Here we present two-dimensional spectroscopy of a star-forming galaxy at redshift z=3.09 (seen 11.5 Gyr ago, when the Universe was 20 per cent of its current age): its spatially extended Ly-alpha emission appears to be absorbed by HI in a foreground screen covering the entire galaxy, with a lateral extent of at least 100 kpc and remarkable velocity coherence. It was plausibly ejected from the galaxy during a starburst several 1E8 yr earlier and has subsequently swept up gas from the surrounding intergalactic medium and cooled. This demonstrates the galaxy-wide impact of high-redshift superwinds.
We present high-resolution VLA observations of the molecular gas in the host galaxy of the highest redshift quasar currently known, SDSS J1148+5251 (z=6.42). Our VLA data of the CO(3-2) emission have a maximum resolution of 0.17 x 0.13 (~1 kpc), and enable us to resolve the molecular gas emission both spatially and in velocity. The molecular gas in J1148+5251 is extended to a radius of 2.5 kpc, and the central region shows 2 peaks, separated by 0.3 (1.7 kpc). These peaks account for about half of the total emission, while the remainder is more extended. Each of these unresolved peaks contains a molecular gas mass of ~5 x 10^9 M_sun (similar to the total mass found in nearby ULIRGS) and has an intrinsic brightness temperature of ~35 K (averaged over the 1 kpc-sized beam), comparable to what is found in nearby starburst centers. Assuming that the molecular gas is gravitationally bound, we estimate a dynamical mass of ~4.5 x 10^10 M_sun within a radius of 2.5 kpc (~5.5 x 10^10 M_sun if corrected for a derived inclination of i~65 deg.). This dynamical mass estimate leaves little room for matter other than the detected molecular gas, and in particular the data are inconsistent with a ~10^12 M_sun stellar bulge which would be predicted based on the M_BH-sigma_bulge relation. This finding may indicate that black holes form prior to the assembly of the stellar bulges and that the dark matter halos are less massive than predicted based on the black hole/bulge mass relationship.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا