Do you want to publish a course? Click here

RAPTOR observations of the early optical afterglow from GRB 050319

281   0   0.0 ( 0 )
 Added by Przemyslaw Wozniak
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 050319 starting 25.4 seconds after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. Our well sampled light curve of the early optical afterglow is composed of 32 points (derived from 70 exposures) that measure the flux decay during the first hour after the GRB. The GRB 050319 light curve measured by RAPTOR can be described as a relatively gradual flux decline (power-law index alpha = -0.37) with a transition, at about 400 s after the GRB, to a faster flux decay (alpha = -0.91). The addition of other available measurements to the RAPTOR light curve suggests that another emission component emerged after 10^4 s. We hypothesize that the early afterglow emission is powered by extended energy injection or delayed reverse shock emission followed by the emergence of forward shock emission.



rate research

Read More

The CCD magnitudes in Johnson $UBV$ and Cousins $RI$ photometric passbands for the afterglow of the long duration GRB 030226 are presented. Upper limits of a few mJy to millimeter wave emission at the location of optical are obtained over the first two weeks. The optical data presented here, in combination with other published data on this afterglow, show an early $R$ band flux decay slope of 0.77$pm$0.04, steepening to 2.05$pm$0.04 about 0.65$pm$0.03 day after the burst. Interpreted as the ``jet break, this indicates a half opening angle of $sim 3.2$ degree for the initial ejection, for an assumed ambient density of $sim 1 {rm cm}^{-3}$. Broadband spectra show no appreciable evolution during the observations, and indicate the presence of synchrotron cooling frequency $ u_c$ near the upper edge of the optical band. From the broadband spectra we derive an electron energy distribution index $p = 2.07pm0.06$ and an intrinsic extinction $E(B - V)sim0.17$. Millimeter upper limits are consistent with these derived parameters.
PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observed the early-time optical afterglow of GRB 060607A and obtained a densely sampled multiwavelength light curve that begins only tens of seconds after the GRB. Located at Cerro Tololo Inter-American Observatory in Chile, PROMPT is designed to observe the afterglows of gamma-ray bursts using multiple automated 0.4-m telescopes that image simultaneously in many filters when the afterglow is bright and may be highly variable. The data span the interval from 44 seconds after the GRB trigger to 3.3 hours in the Bgri filters. We observe an initial peak in the light curve at approximately three minutes, followed by rebrightenings peaking around 40 minutes and again at 66 minutes. Although our data overlap with the early Swift gamma-ray and x-ray light curves, we do not see a correlation between the optical and high-energy flares. We do not find evidence for spectral evolution throughout the observations. We model the variations in the light curves and find that the most likely cause of the rebrightening episodes is a refreshment of the forward shock preceded by a rapidly fading reverse shock component, although other explanations are plausible.
Using two identical telescopes at widely separated longitudes, the ROTSE-III network observed decaying emission from the remarkably bright afterglow of GRB 030329. In this report we present observations covering 56% of the period from 1.5-47 hours after the burst. We find that the light curve is piecewise consistent with a powerlaw decay. When the ROTSE-III data are combined with data reported by other groups, there is evidence for five breaks within the first 20 hours after the burst. Between two of those breaks, observations from 15.9-17.1 h after the burst at 1-s time resolution with McDonald Observatorys 2.1-m telescope reveal no evidence for fluctuations or deviations from a simple power law. Multiple breaks may indicate complex structure in the jet. There are also two unambiguous episodes at 23 and 45 hours after the burst where the intensity becomes consistent with a constant for several hours, perhaps indicating multiple injections of energy into the GRB/afterglow system.
We present results of Swift optical, UV and X-ray observations of the afterglow of GRB 050801. The source is visible over the full optical, UV and X-ray energy range of the Swift UVOT and XRT instruments.Both optical and X-ray lightcurves exhibit a broad plateau (Delta t/t ~ 1) during the first few hundred seconds after the gamma-ray event. We investigate the multiwavelength spectral and timing properties of the afterglow, and we suggest that the behaviour at early times is compatible with an energy injection by a newly born magnetar with a period of a few tenths of a millisecond, which keeps the forward shock refreshed over this short interval by irradiation. Reverse shock emission is not observed. Its suppression might be due to GRB ejecta being permeated by high magnetic fields, as expected for outflows powered by a magnetar.Finally, the multiwavelength study allows a determination of the burst redshift, z=1.56.
157 - Lang Xie 2020
Gamma-ray burst (GRB) 150910A was detected by {it Swift}/BAT, and then rapidly observed by {it Swift}/XRT, {it Swift}/UVOT, and ground-based telescopes. We report Lick Observatory spectroscopic and photometric observations of GRB~150910A, and we investigate the physical origins of both the optical and X-ray afterglows, incorporating data obtained with BAT and XRT. The light curves show that the jet emission episode lasts $sim 360$~s with a sharp pulse from BAT to XRT (Episode I). In Episode II, the optical emission has a smooth onset bump followed by a normal decay ($alpha_{rm R,2} approx -1.36$), as predicted in the standard external shock model, while the X-ray emission exhibits a plateau ($alpha_{rm X,1} approx -0.36$) followed by a steep decay ($alpha_{rm X,2} approx -2.12$). The light curves show obvious chromatic behavior with an excess in the X-ray flux. Our results suggest that GRB 150910A is an unusual GRB driven by a newly-born magnetar with its extremely energetic magnetic dipole (MD) wind in Episode II, which overwhelmingly dominates the observed early X-ray plateau. The radiative efficiency of the jet prompt emission is $eta_{gamma} approx 11%$. The MD wind emission was detected in both the BAT and XRT bands, making it the brightest among the current sample of MD winds seen by XRT. We infer the initial spin period ($P_0$) and the surface polar cap magnetic field strength ($B_p$) of the magnetar as $1.02 times 10^{15}~{rm G} leq B_{p} leq 1.80 times 10^{15}~{rm G}$ and 1~ms $leq P_{0}vleq 1.77$~ms, and the radiative efficiency of the wind is $eta_w geq 32%$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا