Do you want to publish a course? Click here

PROMPT Observations of the Early-Time Optical Afterglow of GRB 060607A

123   0   0.0 ( 0 )
 Added by Melissa Nysewander
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes) observed the early-time optical afterglow of GRB 060607A and obtained a densely sampled multiwavelength light curve that begins only tens of seconds after the GRB. Located at Cerro Tololo Inter-American Observatory in Chile, PROMPT is designed to observe the afterglows of gamma-ray bursts using multiple automated 0.4-m telescopes that image simultaneously in many filters when the afterglow is bright and may be highly variable. The data span the interval from 44 seconds after the GRB trigger to 3.3 hours in the Bgri filters. We observe an initial peak in the light curve at approximately three minutes, followed by rebrightenings peaking around 40 minutes and again at 66 minutes. Although our data overlap with the early Swift gamma-ray and x-ray light curves, we do not see a correlation between the optical and high-energy flares. We do not find evidence for spectral evolution throughout the observations. We model the variations in the light curves and find that the most likely cause of the rebrightening episodes is a refreshment of the forward shock preceded by a rapidly fading reverse shock component, although other explanations are plausible.



rate research

Read More

The CCD magnitudes in Johnson $UBV$ and Cousins $RI$ photometric passbands for the afterglow of the long duration GRB 030226 are presented. Upper limits of a few mJy to millimeter wave emission at the location of optical are obtained over the first two weeks. The optical data presented here, in combination with other published data on this afterglow, show an early $R$ band flux decay slope of 0.77$pm$0.04, steepening to 2.05$pm$0.04 about 0.65$pm$0.03 day after the burst. Interpreted as the ``jet break, this indicates a half opening angle of $sim 3.2$ degree for the initial ejection, for an assumed ambient density of $sim 1 {rm cm}^{-3}$. Broadband spectra show no appreciable evolution during the observations, and indicate the presence of synchrotron cooling frequency $ u_c$ near the upper edge of the optical band. From the broadband spectra we derive an electron energy distribution index $p = 2.07pm0.06$ and an intrinsic extinction $E(B - V)sim0.17$. Millimeter upper limits are consistent with these derived parameters.
The RAPid Telescopes for Optical Response (RAPTOR) system at Los Alamos National Laboratory observed GRB 050319 starting 25.4 seconds after gamma-ray emission triggered the Burst Alert Telescope (BAT) on-board the Swift satellite. Our well sampled light curve of the early optical afterglow is composed of 32 points (derived from 70 exposures) that measure the flux decay during the first hour after the GRB. The GRB 050319 light curve measured by RAPTOR can be described as a relatively gradual flux decline (power-law index alpha = -0.37) with a transition, at about 400 s after the GRB, to a faster flux decay (alpha = -0.91). The addition of other available measurements to the RAPTOR light curve suggests that another emission component emerged after 10^4 s. We hypothesize that the early afterglow emission is powered by extended energy injection or delayed reverse shock emission followed by the emergence of forward shock emission.
We present and perform a detailed analysis of multi-wavelength observations of thisgrb, an optical bright GRB with an observed reverse shock (RS) signature. Observations of this GRB were acquired with the BOOTES-4 robotic telescope, the fermi, and the swift missions. Time-resolved spectroscopy of the prompt emission shows that changes to the peak energy (Ep) tracks intensity and the low-energy spectral index seems to follow the intensity for the first episode, whereas this tracking behavior is less clear during the second episode. The fit to the afterglow light curves shows that the early optical afterglow can be described with RS emission and is consistent with the thin shell scenario of the constant ambient medium. The late time afterglow decay is also consistent with the prediction of the external forward shock (FS) model. We determine the properties of the shocks, Lorentz factor, magnetization parameters, and ambient density of thisgrb, and compare these parameters with another 12 GRBs, consistent with having RS produced by thin shells in an ISM-like medium. The value of the magnetization parameter ($R_{rm B} approx 18$) indicates a moderately magnetized baryonic dominant jet composition for thisgrb. We also report the host galaxy photometric observations of thisgrb obtained with 10.4m GTC, 3.5m CAHA, and 3.6m DOT telescopes and find the host (photo $z$ = $2.8^{+0.7}_{-0.9}$) to be a high mass, star-forming galaxy with a star formation rate of $20 pm 10 msun$ $rm yr^{-1}$.
The early optical emission of the moderately high redshift ($z=3.08$) GRB 060607A shows a remarkable broad and strong peak with a rapid rise and a relatively slow power-law decay. It is not coincident with the strong early-time flares seen in the X-ray and gamma-ray energy bands. There is weak evidence for variability superposed on this dominant component in several optical bands that can be related to flares in high energy bands. While for a small number of GRBs, well-sampled optical flares have been observed simultaneously with X-ray and gamma ray pulses, GRB 060607A is one of the few cases where the early optical emission shows no significant evidence for correlation with the prompt emission. In this work we first report in detail the broad band observations of this burst by Swift. Then by applying a simple model for the dynamics and the synchrotron radiation of a relativistic shock, we show that the dominant component of the early emissions in optical wavelengths has the same origin as the tail emission produced after the main gamma ray activity. The most plausible explanation for the peak in the optical light curve seems to be the cooling of the prompt after the main collisions, shifting the characteristic synchrotron frequency to the optical bands. It seems that the cooling process requires a steepening of the electron energy distribution and/or a break in this distribution at high energies. The sharp break in the X-ray light curve at few thousands of seconds after the trigger, is not observed in the IR/optical/UV bands, and therefore can not be a jet break. Either the X-ray break is due to a change in the spectrum of the accelerated electrons or the lack of an optical break is due to the presence of a related delayed response component (Abbreviated).
Using two identical telescopes at widely separated longitudes, the ROTSE-III network observed decaying emission from the remarkably bright afterglow of GRB 030329. In this report we present observations covering 56% of the period from 1.5-47 hours after the burst. We find that the light curve is piecewise consistent with a powerlaw decay. When the ROTSE-III data are combined with data reported by other groups, there is evidence for five breaks within the first 20 hours after the burst. Between two of those breaks, observations from 15.9-17.1 h after the burst at 1-s time resolution with McDonald Observatorys 2.1-m telescope reveal no evidence for fluctuations or deviations from a simple power law. Multiple breaks may indicate complex structure in the jet. There are also two unambiguous episodes at 23 and 45 hours after the burst where the intensity becomes consistent with a constant for several hours, perhaps indicating multiple injections of energy into the GRB/afterglow system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا