Do you want to publish a course? Click here

The puzzling case of GRB 990123: multiwavelength afterglow study

399   0   0.0 ( 0 )
 Added by Elisabetta Maiorano
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the BeppoSAX data analysis of the afterglow of Gamma-Ray Burst (GRB) 990123, one of the brightest GRBs detected by BeppoSAX. Mainly due to its exceptional brightness, this is the only source for which the Wide Field Cameras have allowed an early detection of the X-ray afterglow between about 20 and 60 min after the GRB trigger. Besides, again for the first time, high-energy emission from the afterglow was detected up to 60 keV. For the X-ray afterglow we found a power-law decay with index alpha = 1.46 +/- 0.04; the spectrum has a power-law shape with photon index Gamma about 1.9. The backward extrapolation of the afterglow decay smoothly reconnects with the late GRB emission, thus suggesting that both emissions are produced by the same phenomenon. An extensive set of multiwavelength observations for the GRB 990123 afterglow made during the BeppoSAX pointing was collected from the literature. The hard X-ray to radio range coverage allowed to construct a spectral flux distribution and to perform an analysis of the GRB afterglow in the context of the fireball model. We also report the results of temporal and spectral analysis of an X-ray source serendipitously observed about 22 arcmin north of the GRB afterglow, along with the optical spectroscopy of its possible counterpart to establish the nature of this source.



rate research

Read More

We present multiwavelength observations of a gamma-ray burst detected by INTEGRAL (GRB 030227) between 5.3 hours and ~1.7 days after the event. Here we report the discovery of a dim optical afterglow (OA) that would not have been detected by many previous searches due to its faintess (R~23). This OA was seen to decline following a power law decay with index Alpha_R= -0.95 +/- 0.16. The spectral index Beta_opt/NIR yielded -1.25 +/- 0.14. These values may be explained by a relativistic expansion of a fireball (with p = 2.0) in the cooling regime. We also find evidence for inverse Compton scattering in X-rays.
The prompt $(t siml 0.16$ days) light curve and initial 9-th magnitude optical flash from GRB 990123 can be attributed to a reverse external shock, or possibly to internal shocks. We discuss the time decay laws and spectral slopes expected under various dynamical regimes, and discuss the constraints imposed on the model by the observations, arguing that they provide strongly suggestive evidence for features beyond those in the simple standard model. The longer term afterglow behavior is discussed in the context of the forward shock, and it is argued that, if the steepening after three days is due to a jet geometry, this is likely to be due to jet-edge effects, rather than sideways expansion.
We report on the BeppoSAX and multiwavelength data analysis of the afterglow of Gamma-Ray Burst (GRB) 990123. Mainly due to its exceptional brightness, this is the only source for which the Wide Field Cameras have allowed an early detection of the X-ray afterglow between about 20 and 60 min after the GRB trigger. Besides, again for the first time, high-energy emission from the afterglow was detected up to 60 keV. The backwards extrapolation of the afterglow decay smoothly reconnects with the late GRB emission, thus indicating that both are consistent with being produced by the same phenomenon. For the X-ray afterglow we found a power-law decay with index alpha_X = 1.46 +/- 0.04; the spectrum has a power-law shape with photon index Gamma about 2. An extensive set of multiwavelength observations on the afterglow, collected from the literature and made during the BeppoSAX pointing, allowed constructing a Spectral Flux Distribution. We performed an analysis of the GRB afterglow emission in the context of the fireball model.
Gamma-ray bursts (GRBs) are thought to result from the interaction of an extremely relativistic outflow interacting with a small amount of material surrounding the site of the explosion. Multi-wavelength observations covering the gamma-ray to radio wavebands allow investigations of this `fireball model. On 23 January 1999 optical emission was detected while the gamma-ray burst was still underway. Here we report the results of gamma-ray, optical/infra-red, sub-mm, mm and radio observations of this burst and its afterglow, which indicate that the prompt and afterglow emissions from GRB 990123 are associated with three distinct regions in the fireball. The afterglow one day after the burst has a much lower peak frequency than those of previous bursts; this explains the short-lived nature of the radio emission, which is not expected to reappear. We suggest that such differences reflect variations in the magnetic-field strengths in the afterglow emitting regions.
166 - B. Gendre 2011
Aim: To present the optical observations of the afterglow of GRB 101024A and to try to reconcile these observations with the X-ray afterglow data of GRB 101024A using current afterglow models Method: We employ early optical observations using the Zadko Telescope combined with X-ray data and compare with the reverse shock/forward shock model. Results: The early optical light curve reveals a very unusual steep decay index of alpha~5. This is followed by a flattening and possibly a plateau phase coincident with a similar feature in the X-ray. We discuss these observations in the framework of the standard reverse shock/forward shock model and energy injection.We note that the plateau phase might also be the signature of the formation of a new magnetar.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا